修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Evaluation of Plamsonic Enhancement and Quenching of Ag Nanoparticles in Organic Light-Emitting Diode

DOI:10.1109/cleoe-eqec.2019.8871879 出版年份:2019 更新时间:2025-09-11 14:15:04
摘要: The utilization of localized surface plasmon (LSPR) to improve the yield of organic light emitting diode (OLED), has been subject of numerous publications and reports. Several enhancement mechanisms have been highlighted such as the increase of F?rster energy transfer, the enhancement of the OLED electroluminescence as well as the increase of the current I and the decrease of the turn-on voltage V [1,2]. Nevertheless, these mechanisms are still not completely studied and understood. One major problem of using metallic NPs is the inherent losses associated with their conductivity. Another important issue concerns the evaluation of their electrical and optical effects on the total yield enhancement. Besides, the LSPR wavelength and the distance of the metallic NPs from the OLED emitting layer (EML) are very important parameters for a maximum enhancement of the near-field-induced energy transfer between excitons and NPs LSPR. In fact, LSPR modifies the radiative and the non-radiative decay rates of adjacent emitters resulting in two competitive processes: the fluorophores radiation intensity enhancement and the non-radiative quenching of activated fluorophores on the NP metal surface. To obtain an overall enhancement, the resonance energy of the fluorophore and the LSPR should be carefully adjusted with an appropriate distance between the metal NPs and the emitter. In this work, we report a thorough investigation of Ag NPs randomly dispersed into a standard guest-host OLED (Alq3:DCM) by thermal evaporation during the OLED fabrication process. Mainly, we follow-up the interaction between the Ag-thin layer and the excitons by varying the position of Ag-NPs within the OLED stack (fig. 1). At each position of Ag-NPs, we compare the plasmonic-OLED performances to those of the reference one without NPs (zero line) and we bring a general analysis of the electroluminescence efficiency variation as a function of the position of Ag-NPs related to the excitons distribution within the OLED emitting layer. The experimental results allow us to draw the balance between the amplification and quenching due to the Ag-NPs. By considering the spatial distribution of the emission sites in the EML, we particularly, highlighted two competing effects: the LSPR amplification for large distances between the Ag-NPs and the emissive sites, and the quenching effect by metallic NPs for short distances between the Ag-NPs and the emissive sites. Nevertheless, other phenomena such as the influence of Ag-NPs on the charge carriers injection and transport as well as extraction effect should be also taken into account in order to thoroughly understand the effect of plasmonic nanoparticles on the OLED structure performance. Our study enable us to suggest a figure of merit giving the total yield as following (cid:75) (cid:97) σ. (cid:69)a. (cid:69)q. (cid:75)ex, where (cid:86) accounts for the electrical effects, (cid:69)a and (cid:69)b are LSPR amplification and plasmonic quenching, respectively and (cid:75)ex is related to the extraction effect. The weight of the previous parameters depends on the distance NPs-EML with three zones of interest: anode side, cathode side and nearby the EML. Two different physical phenomena are also to be considered on the side of the cathode and the anode (blue and green lines in fig.1), as well as the correlation between near and far field. These results are of a great interest in order to develop new generation of highly efficient OLED-based devices.
作者: Amadou T. Diallo,Mahmoud Chakaroun,Sarah Hamdad,Samira Khadir,Juan U. Esparza-Villa,Agnès Ma?tres,Azzedine Boudrioua
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the interaction between Ag nanoparticles and the excitons in an OLED structure to understand the balance between plasmonic enhancement and quenching effects.

The study highlights two competing effects: LSPR amplification at large distances between Ag-NPs and emissive sites, and quenching effect at short distances. It suggests a figure of merit for total yield enhancement, considering electrical effects, LSPR amplification, plasmonic quenching, and extraction effect. The findings are significant for developing highly efficient OLED-based devices.

The study acknowledges inherent losses associated with the conductivity of metallic NPs and the complexity of evaluating their electrical and optical effects on total yield enhancement. The distance between metallic NPs and the OLED emitting layer is critical, requiring precise adjustment for optimal enhancement.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕担视糜诓牧峡蒲?、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“ [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Evaluation of Plamsonic Enhancement and Quenching of Ag Nanoparticles in Organic Light-Emitting Diode”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期