修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Structured Auxiliary Mesh (SAM) Algorithm for Opto-Thermal Simulation of Laser-Based Lighting Systems

DOI:10.1109/cleoe-eqec.2019.8873016 出版年份:2019 更新时间:2025-09-16 10:30:52
摘要: Laser-based lighting systems are an emerging technology, the next step in solid state lighting that revolutionized the way artificial light is generated. The configuration of interest here is the laser-excited remote phosphor (LRP) scheme that consists of a laser diode as the excitation source of an appropriately chosen phosphor sheet. The phosphor is employed for the down-conversion of the incident laser light and broadening of the output spectrum. Although some commercial applications have already been developed, the optimization of LRP systems has yet to be achieved. A bottleneck in their performance is the thermal dependency of the phosphor’s emission characteristics, a phenomenon also known as thermal quenching. As a result, the need for an opto-thermal simulation strategy arises that will enable the study and optimization of LRP systems [1]. The opto-thermal simulation model discussed here is based on Monte Carlo simulations for the optical part, where the absorbed radiant flux is calculated. These optical thermal losses are subsequently used as a volume heat source to solve the transient heat equation by applying the finite element method (FEM) [2]. As thermal quenching is a time-dependent phenomenon in nature, this is an iterative procedure, where the absorbed flux must be calculated for most of the time steps. Typical Monte Carlo ray tracing algorithms use voxel-based meshes to store any calculated properties / attributes. The problem that arises here is that the computational cost for converting the voxel-based mesh to an FEM mesh would be prohibiting for time-dependent analysis. The solution is to directly store the absorbed flux to the FEM mesh. However, the issue that now emerges is locating the interpolating point, namely the point in space where the absorption occurs, within the unstructured FEM mesh. The processing time of a brute force search would be too long, so more sophisticated solutions must be found. SAM algorithms, which were first introduced in [3], are part of a class of algorithms known as geometric search algorithms [4, 5] that deal with point location in unstructured meshes. We propose here a modified SAM algorithm that uses the optical voxel-based mesh as the auxiliary structured mesh for geometric searching. The two meshes, optical and FEM, are superimposed. As point location in voxel-based meshes is trivial, by mapping which elements of the FEM mesh belong to each voxel, we can easily narrow down the number of searches required. To this end, two maps, implemented as binary search trees, are implemented. The first map, maps the voxel number to the nodes of the FEM mesh that lie within it, while the second map, maps the elements of the unstructured mesh that these nodes belong to. The set-up times of these maps heavily depend on the density of the FEM mesh and the order of the elements used. The use of higher-order elements results in considerable set-up times. As higher order elements are not necessary for thermal analysis, this is not a critical issue here. On the other hand, the denser the optical mesh, the fewer FEM elements are mapped to each voxel. However, the size of voxels should be appropriately chosen, since too small voxels may lead to degenerative cases where there are voxels without any nodes lying in them. A distinct advantage of this method is that once the maps are assembled, the search time of elements is O(1). Simulation plays an increasingly crucial role in the study and optimization of optical systems. Due to the increase in computational capabilities, modelling of more complex phenomena can be included and the need of multi-physics approaches rises. The optical properties of materials often shift to temperature above tolerance levels that may render a particular optical design ineffective. In other cases, structural loads may be the critical issue as they can lead to misalignment of optical elements. The proposed SAM algorithm that enables a more efficient coupling of optical and FEM analysis is a valuable tool to such approaches of optical problems.
作者: Elisavet Chatzizyrli,Andreas Wienke,Roland Lachmayer,J?rg Neumann,Dietmar Kracht
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the optimization of laser-excited remote phosphor (LRP) systems through an opto-thermal simulation strategy to address the thermal dependency of the phosphor’s emission characteristics.

The proposed SAM algorithm enables a more efficient coupling of optical and FEM analysis, serving as a valuable tool for the study and optimization of optical systems, particularly in addressing the thermal dependency of phosphor’s emission characteristics in LRP systems.

The computational cost for converting voxel-based mesh to FEM mesh is prohibitive for time-dependent analysis. The set-up times of maps depend heavily on the density of the FEM mesh and the order of the elements used, with higher-order elements resulting in considerable set-up times.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能模块化扫描电子显微镜,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“ [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Structured Auxiliary Mesh (SAM) Algorithm for Opto-Thermal Simulation of Laser-Based Lighting Systems”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期