修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Device characteristics and material developments of indoor photovoltaic devices

DOI:10.1016/j.mser.2019.100517 期刊:Materials Science and Engineering: R: Reports 出版年份:2019 更新时间:2025-09-16 10:30:52
摘要: Indoor photovoltaics (IPVs), which convert the indoor light energy into direct electricity, have attracted research attention due to their potential use as an excellent amicable solution of sustainable power source to drive low-power-needed sensors for the internet of things (IoT) applications. Our daily life adopts various indoor light sources, such as indirect sunlight, incandescent lamps, halogen lamps, ?uorescent lamps, and LED bulbs, that typically deliver lower light intensity (200–1000 lux) as compared to that of sun light (~100,000 lx). In this review, we ?rstly classi?ed the indoor lights depending on their working mechanism and resulting emission spectrum. Because the indoor light intensities are rather low that may lead to overestimate/underestimate the power conversion e?ciency (PCE) of IPV devices, then, the cautious points for correctly measuring the indoor light intensity as well as the device characteristics are summarized. Several light sources with various light intensities are reported so far, but for lack of common or standard calibration meter that induces a ambiguity in PCE determination, so we suggest/propose to use a universal LED lux meter with NIST-traceable calibration (e.g. Extech LT40-NIST) and also recommended the device results are expressed in maximum power point Pmax along with PCE values. It is generally believed that the materials play key roles on the performance of the IPV devices. Since the indoor light intensity is much weaker as compared to that of outdoor irradiation, the typical inferior photo-stability of organic materials under sunlight may not be as crucial as we considered to harvest indoor light energy, opening a great room for organic IPV material developments. In principle, all materials for outdoor PVs may also be useful for IPVs, but the fundamental material requirement for IPVs which needs su?ciently covering the absorption range between the 350–700 nm with high molar extinction coe?cient should be primarily concerned. In order to get the thorough knowledge of materials for achieving better e?cient IPVs, the reported IPVs were collected and summarized. According to these reports, the materials utilized for IPVs have been classi?ed into two major groups, inorganic and organic materials, then divided them into several sub-classes, including (1) silicon and III-V semiconductor photovoltaics, (2) dye-sensitized photovoltaics, (3) organic photovoltaics, and (4) perovskite-based photovoltaics, depend on their structural nature and device working principle. For every individual class, the structure-property-e?ciency relationship of the materials was analyzed together with the highlights on the best e?ciency material, challenge and perspective. For inorganic IPV materials, III-V semiconductor GaAs-based IPVs performed a very impressive PCE (28%). For dye sensitizers, there are more ?exible strategies to modulate the absorption pro?les of organic materials. A high e?ciency dye-sensitized solar cell (DSSC)-based IPV with a PCE up to 32% has been successfully realized with co-sensitized dyes. For organic solar cell (OSC)-based IPVs, fullerene-based acceptors are advantageous for their well-matching desired absorption range and superior electron transport features. A recent OSC-based IPV with the active layer composed of dithienobenzene-based donor and fullerene acceptor was reported to deliver a PCE of 28%. Among these emerging photovoltaic materials, it is no doubt that perovskites (e.g. CH3NH3PbI3) are superior for solar energy conversion due to the crystallinity for good charge transport, better spectral coverage and the low exciton binding energy. Until very recent, a perovskite-based IPV with a PCE of 35% was reported with good stability by the incorporation of an ionic liquid for e?ectively passivating the surface of the perovskite ?lm, indicating the bright prospect of perovskite for IPV application. Overall, the review on these reports implies the essential criteria of materials suitable for IPVs that may trigger new ideas for developing future champion materials for various devices and the realization of practical IPV applications.
作者: Addanki Venkateswararao,Johnny K.W. Ho,Shu Kong So,Ken-Tsung Wong,Shun-Wei Liu
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the potential of indoor photovoltaics (IPVs) as a sustainable power source for low-power-needed sensors in IoT applications by analyzing the device characteristics and material developments.

The review concludes that IPVs have significant potential as a sustainable power source for IoT applications. It emphasizes the importance of material development for achieving better efficiency and stability in IPV devices, and suggests future research directions for overcoming current limitations.

The review highlights the lack of a common or standard calibration meter for PCE determination, leading to ambiguity. It also points out the challenges in material stability and the need for materials with absorption in the 350–700 nm range with high molar extinction coefficients.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Device characteristics and material developments of indoor photovoltaic devices”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期