修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Electronic Structure of In <sub/> 3– <i>x</i> </sub> Se <sub/>4</sub> Electron Transport Layer for Chalcogenide/p-Si Heterojunction Solar Cells

DOI:10.1021/acsomega.9b02210 期刊:ACS Omega 出版年份:2019 更新时间:2025-09-19 17:13:59
摘要: In this article, we perform density functional theory calculation to investigate the electronic and optical properties of newly reported In3?xSe4 compound using CAmbridge Serial Total Energy Package (CASTEP). Structural parameters obtained from the calculations agree well with the available experimental data, indicating their stability. In the band structure of In3?xSe4 (x = 0, 0.11, and, 0.22), the Fermi level (EF) crossed over several bands in the conduction bands, which is an indication of the n-type metal-like behavior of In3?xSe4 compounds. On the other hand, the band structure of In3?xSe4 (x = 1/3) exhibits semiconducting nature with a band gap of ~0.2 eV. A strong hybridization among Se 4s, Se 4p and In 5s, In 5p orbitals for In3Se4 and that between Se 4p and In 5p orbitals were seen for β-In2Se3 compound. The dispersion of In 5s, In 5p and Se 4s, Se 4p orbitals is responsible for the electrical conductivity of In3Se4 that is con?rmed from DOS calculations as well. Moreover, the bonding natures of In3?xSe4 materials have been discussed based on the electronic charge density map. Electron-like Fermi surface in In3Se4 ensures the single-band nature of the compound. The e?ciency of the In3?xSe4/p-Si heterojunction solar cells has been calculated by Solar Cell Capacitance Simulator (SCAPS)-1D software using experimental data of In3?xSe4 thin ?lms. The e?ect of various physical parameters on the photovoltaic performance of In3?xSe4/p-Si solar cells has been investigated to obtain the highest e?ciency of the solar cells. The optimized power conversion e?ciency of the solar cell is found to be 22.63% with VOC = 0.703 V, JSC = 38.53 mA/cm2, and FF = 83.48%. These entire theoretical predictions indicate the promising applications of In3?xSe4 two-dimensional compound to harness solar energy in near future.
作者: Bipanko Kumar Mondal,Md. Asif Newaz,Md. Abdur Rashid,Khandaker Monower Hossain,Shaikh Khaled Mostaque,Md. Ferdous Rahman,Mirza Humaun Kabir Rubel,Jaker Hossain
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the electronic and optical properties of newly reported In3?xSe4 compound and its potential as an electron transport window layer for the chalcogenide/p-Si heterojunction solar cells.

The electronic and optical properties of the In3?xSe4 compound have been studied employing CASTEP based on the DFT method. The band structure of the In3?xSe4 compound (for x < 1/3) exhibits that the Fermi level (EF) crossed over several bands, which is an indication of highly degenerate n-type semiconducting or metallic behavior. On the contrary, a band gap of ~0.2 eV was found for In3?xSe4 (x = 1/3) from the band structure calculation. The DOS calculations ensured the metallic conductivity of In3Se4 through dispersion of In 5s, In 5p and Se 4s, Se 4p orbitals. The chemical bonding in In3?xSe4 materials shows mainly the ionic or metallic and covalent nature from the electronic charge density map. Electron-like Fermi surface appeared in the compound, which implies its single-band character. The calculated value of carrier concentration is ~6.01 × 1021 cm?3, which agrees well with the reported values. The optical study of In3?xSe4 indicates that band gap of stoichiometric In3Se4 should be >1.62 eV, which is consistent with the reported values. We also demonstrate the highly e?cient In3Se4?x/p-Si heterojunction solar cells by SCAPS software using experimental data. These results indicate the potential of the In3?xSe4 compound in solar energy harvesting in future.

The LDA function consistently underestimates the band gap. The optical band gap is normally calculated using hybrid functional HSE06 function based on DFT for accurate value, although it is reported that DFT-based hybrid functional cannot always give exact band gaps of the materials found in the experiments. However, HSE06 function was not performed in this study due to system limitations.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Electronic Structure of In <sub/> 3– <i>x</i> </sub> Se <sub/>4</sub> Electron Transport Layer for Chalcogenide/p-Si Heterojunction Solar Cells”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期