Editorial: Advances in Label Free Tissue Imaging With Laser Scanning Microscopy Techniques
DOI:10.3389/fphy.2020.00017
期刊:Frontiers in Physics
出版年份:2020
更新时间:2025-09-23 15:19:57
摘要:
Significant efforts are being spent at the time being for transferring various laser scanning microscopy (LSM) techniques to the realm of tissue characterization, because of their potential to circumvent some of the most important disadvantages of traditional histopathology approaches based on excisional biopsy and tissue staining. Although conventional histopathology is currently regarded as a golden standard for the diagnosing pathologies that reflect in tissular modification (e.g., cancers), limitations such as long diagnosis time, invasiveness, artifacts, sampling error, time consumption, high costs, and interpretive variability make such approaches to be impractical in many scenarios, while also placing considerable pressure on the sustainability of healthcare systems around the world. The potential of LSM techniques to contribute to overcoming these aspects derives from their “non-invasive” character. They can exploit various endogenous optical signals generated by tissues upon interaction with a laser beam and are able to provide optical sections (virtual biopsies) that reflect the tissular architecture at controlled depths. Many studies reported to date showed that LSM techniques can provide label-free information of similar pathologic relevance to the information collected for characterization/confirmation purposes with traditional histopathology approaches. These techniques are thus capable of probing optical properties of tissues with deep implications for resolving important anatomical and physiological aspects which represent hallmarks for disease predisposition and progression. To date techniques such as Confocal Laser Scanning Microscopy (CLSM) [1], Fluorescence Lifetime Imaging (FLIM) [2], Two-Photon Excited Fluorescence Microscopy (TPEF) [2–6], Second Harmonic Generation Microscopy (SHG) [5, 6], Third Harmonic Generation Microscopy (THG) [4], Coherent Anti-Stokes Raman Scattering Microscopy (CARS) [3, 7], as well as other LSM variants such as the Brillouin Microscopy [8] have already been demonstrated to be powerful tools for investigating tissue morphology, functionality, and biochemical composition with high spatial and temporal resolution. In the opinion of many, these techniques, together with investigations approaches based on their combined use, will soon become the central element of the default tissue characterization frameworks for both ex vivo and in vivo assays. Furthermore, emerging LSM techniques exploiting various ingenious strategies to achieve superresolved images in a label-free manner [9–12] are also likely to be transferred soon toward applications addressing tissue imaging.
作者:
Stefan G. Stanciu,Christophe Silien,Paolo Bianchini