修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

European Microscopy Congress 2016: Proceedings || Graphite-to-diamond (13C) direct transition in a diamond anvil high-pressure cell

DOI:10.1002/9783527808465.EMC2016.6073 出版年份:2016 更新时间:2025-09-23 15:23:52
摘要: As the hardest material in nature, diamond is of great importance and interest for scientific studies. However, formation of a diamond is complicated process and requires extreme conditions. Bundy and Kasper (1967) for the first time synthesized a new form of carbon—hexagonal diamond – under conditions of static pressure exceeding about 13 GPa and temperature greater than about 1000°C [1]. At room temperature the crystal structure of graphite is stable up to pressure 15 GPa and loses some of the graphite features at higher pressure, forming metastable graphitic or amorphous phases [2]. Transition of polycrystalline graphite to diamond occurs after hydrostatic pressure treatment near 70 GPa [3]. The development of solid-state phase transitions, including those at the stage of nucleation and development of a new phase practically always is connected with the relaxation of elastic stress [4], and in case of graphite-diamond transformation the latter can play main role. The goal of the present work is the formation of diamond from graphite in direct phase transition in a diamond anvil high-pressure cell, where the relaxation of elastic stress can be realized by means of plastic deformation of the sample. The experiment was performed at room temperature without a catalyst.13С was subjected to the shear deformation under pressure of 25 GPa. The structure studies of the obtained material were made by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). In order to prevent the confusion of the diamond obtained in the experiment with one of the diamond anvils we used graphite composed of 13C carbon isotope atoms as a precursor. The diamond anvils consisted of conventional 12C diamond. Before TEM examination of each sample a Raman spectroscopy was used to verify that it contains only 13 C (diamond) and no 12C. TEM and EELS were carried out using JEOL JEM-2010 high-resolution transmission electron microscope. TEM analysis has shown that the samples obtained in the series of our experiments contain several phases of carbon simultaneously. After the high pressure treatment in shear diamond anvil cell (SDAC) there were observed some fragments of the sample, which contained both hexagonal and rhombohedral graphite (significant amounts of the last one), and also diamond and lonsdaleite. Fig. 1 shows the fragment, where the rhombohedral graphite presents. Fig. 2a shows the diamond structure fragment with {111}-planes composing 70o. Interplanar distances are 0.206 nm. Fig. 2b shows the EELS-spectrum which can be unambiguously attributed to a diamond. Thus, it was shown that 13С-graphite directly transforms into 13С-diamond (at least particularly) without a catalyst at room temperature after treatment in SDAC under pressure of 25 GPa.
作者: Elizaveta Tyukalova,Boris Kulnitskiy,Igor Perezhogin,Alexey Kirichenko,Vladimir Blank
AI智能分析
纠错
研究概述 实验方案 设备清单

The goal of the present work is the formation of diamond from graphite in direct phase transition in a diamond anvil high-pressure cell, where the relaxation of elastic stress can be realized by means of plastic deformation of the sample.

It was shown that 13C-graphite directly transforms into 13C-diamond without a catalyst at room temperature after treatment in a shear diamond anvil cell under pressure of 25 GPa, although the transformation is partial and other carbon phases are also present. This demonstrates the role of elastic stress relaxation through plastic deformation in facilitating the phase transition.

The experiment was performed at room temperature without a catalyst, and the transformation was only partial, with multiple carbon phases present simultaneously. The pressure of 25 GPa is high but may not be sufficient for complete transformation, and the use of shear deformation might introduce complexities in stress relaxation.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“European Microscopy Congress 2016: Proceedings || Graphite-to-diamond (13C) direct transition in a diamond anvil high-pressure cell”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期