修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Energy Harvesting Wireless Communications || Power Allocation for Point-to-Point Energy Harvesting Channels

DOI:10.1002/9781119295952.ch2 出版年份:2019 更新时间:2025-09-23 15:22:29
摘要: This chapter considers a point-to-point EH wireless channel when the transmitter and the receiver are powered by EH. Under this setup, we first maximize various system utilities (such as the end-to-end throughput and the non-outage probability) via adaptive power allocation over time subject to the EH constraints at the transmitter, where the accumulatively consumed energy should not exceed that accumulatively harvested at any time. Under various CSIT and ESIT assumptions, we discuss the respective optimal designs. For example, in the noncausal CSIT and ESIT case, the optimal offline power allocation is shown to follow a non-decreasing and piecewise-constant (or staircase-like) pattern for the Gaussian channel case, and the optimal transmit power corresponds to a staircase water-filling power allocation for the fading channel case. In the causal ESIT and CSIT case, applicable online optimization strategies include dynamic programming-based and heuristically designed power allocation strategies. We also point out several open problems under different ESIT and CSIT considerations. For example, the throughput maximization problems under the case with causal CSIT and noncausal ESIT and the case with no CSIT and noncausal/causal ESIT remain unsolved in general, while the outage probability minimization problems under causal CSIT and noncausal/causal ESIT are also open problems at large. Furthermore, we extend the power allocation policies to other scenarios by considering other practical constraints such as limited battery capacity and imperfect circuits. We show that in the noncausal CSIT and ESIT case, the staircase power allocation with Gaussian channel and the staircase water-filling power allocation with fading channels can be modified to take these new practical constraints into account. With imperfect circuits, the EH transmitter should employ an on-off power allocation, which turns the transmitter into a sleep mode to save power in order to transmit more energy efficiently in the wake-up mode to tradeoff between the transmit energy consumption versus the circuit energy consumption. These new offline power allocation strategies motivate new online power allocation approaches with only causal CSIT and ESIT. Finally, we provide discussions on the transmit and receive power allocations in the case with EH transmitter and EH receiver, where in addition to the transmitter, the receiver's power consumption is also subject to an EH constraint. Under such a scenario, it is essential for the transmitter and the receiver to jointly optimize the transmit power and the code rate (hence, control the receive power consumption) to improve the end-to-end utility. Note that the case of EH receiver has not been widely investigated in the literature and there are rich open problems (e.g. under causal CSIT and ESIT) worth being pursued in future work.
作者: Chuan Huang,Sheng Zhou,Jie Xu,Zhisheng Niu,Rui Zhang,Shuguang Cui
AI智能分析
纠错
研究概述 实验方案

Characterizing the fundamental limits of communication performance in point-to-point energy harvesting channels by designing power allocation at the wireless transmitter, considering various practical constraints and information availability.

The paper concludes that optimal power allocation strategies for energy harvesting channels depend critically on the availability of CSIT and ESIT, with noncausal information enabling staircase-like power allocations. Practical constraints like limited battery and imperfect circuits require modified approaches, unifying energy efficiency and spectral efficiency. Open problems remain, particularly for causal information cases and joint optimization with EH receivers, indicating directions for future research.

The paper discusses limitations such as the computational complexity of dynamic programming for large M, the assumption of ideal energy storage in some cases, and the open problems in certain CSIT and ESIT cases (e.g., causal CSIT with noncausal ESIT). Practical constraints like battery leakage and imperfect charging efficiency are mentioned but not fully explored. The models assume specific channel distributions and may not cover all real-world scenarios.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Energy Harvesting Wireless Communications || Power Allocation for Point-to-Point Energy Harvesting Channels”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期