- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
钙钛矿薄膜瞬态吸收测量中由微观形貌结构瞬态反射引起的伪影
摘要: 在过去十年中,有机铅卤钙钛矿MAPbX3(MA=CH3NH3+;X=Cl?、Br?、I?)因其在太阳能电池和发光器件中的应用而备受关注。评估钙钛矿材料质量时,静态与瞬态吸收光谱及光致发光等光谱表征对研究其光物理性质至关重要。最新研究发现,由于MAPbX3薄膜表面覆盖度差或微观结构复杂导致强烈光散射,其静态吸收光谱的准确测量确实存在困难。这些形貌复杂性在薄膜制备中似乎不可避免,不仅影响稳态光谱测量,更会显著干扰对理解材料中光生载流子动力学至关重要的瞬态光谱表征。 半导体材料中的光激发态会引起介电函数实部与虚部的变化,从而导致吸收(虚部)和反射率(实部)改变——这对铅卤钙钛矿等折射率较高的材料影响尤为显著。瞬态吸收(TA)光谱是探测钙钛矿及其他半导体材料光激发态动力学的典型技术。TA测量中,泵浦激光脉冲激发钙钛矿薄膜,记录随波长和时间变化的诱导吸收变化(ΔA)。以透射光为探针时(图1a),TA信号(ΔA)主要取决于有无泵浦激发时透射探针光强度的比值(参见SI中公式S1),该假设基于透射探针光的损耗完全源于样品吸收。相同实验装置下,也可通过反射探针光作为检测信号进行瞬态反射(TR)测量(图1b),其信号(ΔR/R)由有无泵浦激发时反射探针光强度的比值决定(参见SI中公式S4)。 与主要探测样品体相性质的TA测量不同,TR信号主要检测样品表面折射率变化引起的光诱导反射变化。因此即使同一样品,TR光谱与动力学也可能与TA存在显著差异。例如先前TA与TR测量发现,由于更多表面缺陷存在,MAPbX3钙钛矿薄膜或单晶表面的载流子复合动力学比体相快得多。当对具有大尺寸非均质微观结构的薄膜(如覆盖度差、晶粒粗大或有针孔的薄膜)进行常规TA测量时会出现异常情况——此时透射探针光的损耗可能不仅来自样品吸收,还源于薄膜表面或微结构边界的反射。这种情况下,虽以透射模式采集的瞬态光谱(图1c及SI中公式S6)可能同时包含TA与TR信号成分,导致TA光谱失真及光诱导动力学分析不准确。 溶液法制备的有机/无机卤化铅钙钛矿薄膜是典型形貌微观结构显著影响器件性能的材料。虽然TA光谱已广泛用于研究钙钛矿薄膜的光生载流子动力学,但源自薄膜表面及微结构光诱导反射率变化的TR信号可能造成的TA结果伪影却未被重视。本研究通过对系列不同微观形貌的MAPbBr3钙钛矿薄膜进行精细瞬态光谱分析,并对比MAPbBr3单晶(SCs)的TR测量,证实大尺寸非均质微观结构的MAPbBr3钙钛矿薄膜TA光谱确实包含不可忽略的微结构光诱导反射TR信号——当微结构尺寸从<200 nm增至1-2 μm时,其贡献权重从约20%提升至约100%。TR信号的存在会导致TA光谱出现"伪影"特征,并因更快的表面载流子复合呈现加速的表观动力学,从而误导体相载流子动力学分析。我们还提出通过添加折射率接近样品的溶剂来抑制实际TA测量中TR信号的方法,可在一定程度上减弱TR畸变效应。
关键词: 人工制品、瞬态反射、瞬态吸收、载流子动力学、钙钛矿薄膜、微观结构
更新于2025-09-23 15:23:52