修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
研究主题
  • graphene
  • perovskite solar cells
  • quantum dots
  • Photocatalysis
  • photoluminescence
  • photocatalysis
  • Raman spectroscopy
  • optical properties
  • TiO2
  • stability
应用领域
  • Optoelectronic Information Science and Engineering
  • Materials Science and Engineering
  • Physics
  • Optoelectronic Information Materials and Devices
  • Nanomaterials and Technology
  • Electrical Engineering and Automation
  • Electronic Science and Technology
  • Chemistry
  • Polymer Materials and Engineering
  • Precision Instruments
机构单位
  • Chinese Academy of Sciences
  • Huazhong University of Science and Technology
  • Jilin University
  • University of Electronic Science and Technology of China
  • Zhejiang University
  • Tsinghua University
  • University of Chinese Academy of Sciences
  • University of Science and Technology of China
  • Peking University
  • Shanghai Jiao Tong University
63348 条数据
?? 中文(中国)
  • Simplification and experimental investigation of geometrical surface smoothness model for multi-track laser cladding processes

    摘要: The formation of large area parts requires construction of multi-track laser cladding layers which are significantly influenced by the overlapping coefficient. The geometrical model of optimal overlap ratio to obtain least surface fluctuation of multi-track claddings is derived into a simpler form in terms of the aspect ratio of single-track clads. The error analysis further demonstrates the effectiveness of these models. Multi-track single layer claddings are fabricated at a series of overlap ratios under two process conditions. The surface states of cladding layers are then evaluated by two types of smoothness definitions with two fitting methods to study the optimal overlap ratios. The results show that the experimental optimum conditions identified by two methods are slightly different from each other. The theoretical prediction is in good agreement with the experimental one when the aspect ratio is great enough to support the model assumptions.

    关键词: Laser cladding,Multi-track clads,Overlap ratio,Geometrical model,Surface smoothness

    更新于2025-11-28 14:24:20

  • Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    摘要: Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW) and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

    关键词: Hybrid laser-GMAW welding,GMAW welding,Dual phase steels,Laser beam welding

    更新于2025-11-28 14:24:20

  • Investigation of strengthening mechanism of commercially pure titanium joints fabricated by autogenously laser beam welding and laser-MIG hybrid welding processes

    摘要: In this study, in order to achieve a better understanding of the strengthening mechanism in the commercially pure (CP) Ti welds, autogenously laser beam and laser-MIG hybrid welding of 4.2 mm thick CP-Ti plates were performed and the correlation between microstructure, texture distribution and the mechanical properties were systematically investigated. Microstructural coarsening and increase in microhardness were observed in the HAZ and WZ. The tensile test results suggested the base metal was the weak point of the joint for both welding conditions. The EBSD observations confirmed that a large number of 1012 and 1122 twin grains occurred in the HAZ and WZ of both welded joints, while a higher concentration of these twin grains were found in the laser-MIG hybrid joints. High concentration of the twin grain boundaries can act as barrier to stop dislocation slip during deformation and therefore contribute to the strengthening of the welds. The existence of very small twin grains and acicular α phase in HAZ and WZ would equivalently reduce the averaged grain size and therefore induce an increase in strength based on Hall-Petch’s law. In addition, the averaged Schmid factor of BM is higher than that of the WZ and HAZ in both welding joints suggesting that the grain boundary sliding will take place preferably in BM during deformation so that the necking and fracture occurred in base metal during tensile tests of both welding joint specimens.

    关键词: Texture,Mechanical property,Laser-MIG hybrid welding,Strengthening mechanism,Commercially pure titanium,Laser beam welding,Microstructure

    更新于2025-11-28 14:24:20

  • Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting

    摘要: Although different kinds of metal materials have been built in the past years, it is difficult to fabricate the components of copper alloys with high strength and high conductivity due to their high reflectivity and thermal conductivity. In this paper, Cu-Cr alloy with high strength and high conductivity was successfully manufactured by high laser power selective laser melting. The microstructure, mechanical properties and conductivity were studied and compared before and after the heat treatment. The microstructure of the as-built sample was columnar grains with very fine cellular sub-structures and precipitates of Cr and Cr2O3. After heat treatment, the Cr particles precipitated from Cu matrix, resulting in simultaneous increase in strength and conductivity. The ultimate tensile strength of 468 MPa, yield strength of 377.33 MPa, and electrical conductivity of 98.31% IACS were achieved, which is even better than the samples fabricated by rolling with post heat treatment.

    关键词: Cu-Cr alloy,Electronic conductivity,Laser processing,Microstructure,Mechanical properties

    更新于2025-11-28 14:24:20

  • Welding of Dissimilar Steel/Al Joints Using Dual-Beam Lasers with Side-by-Side Configuration

    摘要: Welding of dissimilar steel/Al lapped joints of 1.5 mm in thickness was carried out by using dual-beam laser welding with side-by-side configuration. The effect of the major process parameters including the dual-beam power ratio of (Rs) and dual-beam distance (d1) on the steel/Al joint characteristics was investigated concerning the weld shape, interface microstructures, tensile resistance and fracture behavior. The results show that dual-beam laser welding with side-by-side configuration produces soundly welded steel/Al lapped joints free of welding defects. The processing parameters of Rs and d1 have a great influence on the weld appearance, the weld penetration in the Al alloy side (P2) and the welding defects. Variation in the depth of the P2 and the locations at the Al/weld interface cause heterogeneous microstructures in the morphology and the thickness of the intermetallic compound (IMC) layers. In addition, electron back scattered diffraction (EBSD) phase mapping reveals that the IMC layer microstructures formed at the Al/weld interface include the needle-like θ-Fe4Al13 phases and compact lath η-Fe2Al5 layers. Some very fine θ-Fe4Al13 and η-Fe2Al5 phases generated along the weld grain boundaries of the steel/Al joints are also confirmed. Finally, there is a matching relationship between the P2 and the tensile resistance of steel/Al joints, and the maximum tensile resistance of 109.2 N/mm is obtained by the steel/Al joints produced at the Rs of 1.50 during dual-beam laser welding with side-by-side configuration. Two fracture path modes have taken place depending on the P2, and relatively high resistance has been achieved for the steel/Al joints with an optimum P2.

    关键词: dual-beam laser welding,tensile resistance,side-by-side configuration,EBSD phase mapping,steel/Al joint

    更新于2025-11-28 14:24:20

  • Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique

    摘要: The 12CrNi2 alloy steel powder studied in the present paper is mainly used to manufacture camshafts for nuclear power emergency diesel engines. Laser cladding deposition is of great signi?cance for the manufacture of nuclear power emergency diesel camshafts, which has the advantages of reducing material cost and shortening the manufacturing cycle. However, due to the extremely uneven heating of the components during the deposition process, a complex residual stress ?eld occurs, resulting in crack defects and residual deformation of the components. In the present paper, 12CrNi2 bulk specimens were prepared on the Q460E high-strength structural steel substrate at different preheating temperatures by laser cladding deposition technique, and a ?nite element residual stress analysis model was established to investigate the effects of different preheating temperatures on the microstructure, properties, and residual stress of the specimens. The results of the experiments and ?nite element simulations show that with the increase of preheating temperature, the content of martensite/bainite in the deposited layer decreases, and the ferrite content increases. The proper preheating temperature (150 ?C) has good mechanical properties. The residual stress on the surface of each specimen decreases with the increase of the preheating temperature. The longitudinal stress is greater at the rear-end deposition part, and the lateral residual stress is greater on both sides along the scanning direction.

    关键词: substrate preheating,12CrNi2 alloy steel powder,residual stress,laser cladding deposition,microstructure and properties

    更新于2025-11-28 14:24:20

  • Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer

    摘要: The influence of conventional laser keyhole welding and beam wobbling was evaluated at two weld travel speeds and power settings. Fracture in linear lap welds would occur during specimen preparation due to the presence of Al-rich brittle fusion zone, unless one utilizes a circular laser wobbling path (at 1000 Hz). Wobbling provided better integrity due to the presence of a Mg-rich ductile fusion zone and a larger bonded width. It can be concluded that laser beam wobbling enhances joint quality by widening the joint area and mitigating formation of brittle secondary phases at the joint fusion zone.

    关键词: Aluminum,Magnesium,Interlayer,Laser welding,Beam wobbling,Microstructure

    更新于2025-11-28 14:24:20

  • A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion

    摘要: The industrial breakthrough of metal additive manufacturing processes mainly involves highly regulated sectors, e.g., aerospace and healthcare, where both part and process qualification are of paramount importance. Because of this, there is an increasing interest for in-situ monitoring tools able to detect process defects and unstable states since their onset stage during the process itself. In-situ measured quantities can be regarded as “signatures” of the process behaviour and proxies of the final part quality. This study relies on the idea that the by-products of laser powder bed fusion (LPBF) can be used as process signatures to design and implement statistical monitoring methods. In particular, this paper proposes a methodology to monitor the LPBF process via in-situ infrared (IR) video imaging of the plume formed by material evaporation and heating of the surrounding gas. The aspect of the plume naturally changes from one frame to another following the natural dynamics of the process: this yields a multimodal pattern of the plume descriptors that limits the effectiveness of traditional statistical monitoring techniques. To cope with this, a nonparametric control charting scheme is proposed, called K-chart, which allows adapting the alarm threshold to the dynamically varying patterns of the monitored data. A real case study in LPBF of zinc powder is presented to demonstrate the capability of detecting the onset of unstable conditions in the presence of a material that, despite being particularly interesting for biomedical applications, imposes quality challenges in LPBF because of its low melting and boiling points. A comparison analysis is presented to highlight the benefits provided by the proposed approach against competitor methods.

    关键词: Process plume,Metal additive manufacturing,Laser powder bed fusion,Infrared imaging,In-situ monitoring,Zinc

    更新于2025-11-28 14:24:20

  • Laser cooling arc plasma effect in laser-arc hybrid welding of 316L stainless steel

    摘要: Current laser-plasma interaction theory supports that the plasma energy e.g. electron temperature would increase by the effect of inverse bremsstrahlung (IB) absorption, when a laser beam passed through the plasma. However, in this paper, we found an interesting laser cooling arc plasma effect (LCAPE) during kilo-Watt fiber laser-TIG hybrid welding. Based on theoretical modelling and experiments, we observed that a temperature decrease of more than 5000 K at the tail of the argon plasma occurred under different process parameters during hybrid welding of 316L stainless steel. We proposed the LCAPE is caused by the laser-induced metal vapor. The mechanism mainly includes the convection cooling and enhanced radiation of the arc plasma by the metal vapor. Our findings could broaden the theory of laser-plasma interaction and provide a theoretical reference to the modulation and control of plasma in industries.

    关键词: Cooling effect,Stainless steel,Laser-arc hybrid welding,Arc plasma,Fiber laser

    更新于2025-11-28 14:24:20

  • Vibration parameters optimum of 316L steel laser welding under high frequency micro-vibration condition

    摘要: High frequency micro vibration combined with laser was applied in the laser welding process parameters were chosen by comparison of weld geometry. In detail, laser power(P) is 2.5kW, welding speed(V) is 1.2m / min, defocusing amount(DA) is -5mm. Three parameters including frequency(F), vibration acceleration(A) and angle(θ) were changed according to the orthogonal test scheme. The microstructure and the tensile properties of the welded joint were compared and analyzed. The morphology of weld tail was analyzed to describe hole stability. It was found that micro-structure and mechanical of joint was significantly influenced by A and F. In the case of vibration resonance, the higher the F, the better the ultimate tensile strength(UTS), and the higher the hardness. When F was 1360 Hz, UTS was 602 MPa. When A was increased from 10 to 60 m/s2, the UTS was improved by 10 MPa. HW and HL were even disappeared in a higher resonance state. Response surface analysis results showed that factors of F and A have significant effects on the width of weld. Width was increased by higher resonance state. It was obtained that optimum process parameters were F=1360 Hz, A= 60 m/s2 and θ = 90°. UTS was 602MPa, hardness was 214.5 Hv, and elongation was 40%. This is mainly due to the grain refinement strengthening.

    关键词: Laser welding,Mechanical property,Parameter,Response surface,Vibration

    更新于2025-11-28 14:24:20