修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Microwave plasma torch synthesis of Zn Al oxides as adsorbent and photocatalyst for organic compounds removal

    摘要: Zn-Al based oxides were synthesized using a microwave plasma torch (MPT) in which the precursors were introduced into the reaction chamber either upstream or downstream of the inlet, respectively. Zn\Al layered doubled oxide (LDO) samples with a layer-by-layer structure obtained from the downstream path exhibited high adsorption capacity for anionic species, i.e., acid red 27 (AR27) and methyl orange (MO) dyes through hydrogen bonding and electrostatic interaction. The adsorption behavior follows a pseudo-second-order model and the Langmuir isotherm, suggesting that chemisorption of adsorbate on the adsorbent surface plays a significant role. Zn\Al oxide (ZAO) powders prepared from the upstream path show high crystallinity, enabling them to photocatalytically degrade methyl blue (MB) dye solution under UV and visible light irradiation. The crystallization mechanisms for ZAO and LDO prepared by the MPT method were also proposed in this study. In summary, the MPT process is a facile, rapid, scalable, and cost-effective method for synthesizing of Zn\Al based materials for many practical applications.

    关键词: Photocatalyst,Zn-Al oxide,Adsorbent,Microwave Plasma Torch Synthesis

    更新于2025-09-23 15:23:52

  • Highly efficient multifunctional Ag/TiO2 nanotubes/Ti plate coated with MIL-88B(Fe) as a photocatalyst, adsorbent, and disinfectant in water treatment

    摘要: Multifunctional MIL-88B(Fe)–Ag/TiO2 nanotubes/Ti plates were prepared via dip-coating process. Pollutant removals from aqueous solutions were investigated using three different reactions: (1) adsorption of heavy metal ion (Pb2+ and Cd2+), (2) photocatalytic degradation of methyl orange dye (MO), and (3) antibacterial effect for Escherichia coli (E. coli) degradation. Photocatalytic results for dye degradation under UV light irradiation proved the highest activity of the MIL-88B(Fe)–Ag/TiO2 nanotubes/Ti plates. The degradation rate constant of MIL-88B(Fe)–Ag/TiO2 nanotubes/Ti plates was approximately four times as that of pure TiO2 nanotubes/Ti under UV irradiation. In addition, this plate showed the effective removal of heavy metal ions by sorption process. The adsorption of Pb2+ and Cd2+on the MIL-88B(Fe)–Ag/TiO2 nanotubes/Ti plates reached a maximum capacity of 113 and 138 mg/g, and this value was approximately 1.6 times as that of pure TiO2 nanotubes/Ti. In addition, the multifunctional composite plates demonstrated great antibacterial activities towards E. coli. All bacteria colonies killed after 60 min photocatalytic treatment on MIL-88B(Fe)–Ag/TiO2 nanotubes/Ti plates. The results show the importance of a cooperative effect between the MIL-88B(Fe) metal organic framework (MOF) and Ag/TiO2 nanotubes/Ti plates. The simultaneous removals of these pollutants with the high efficiency showed an facile approach for the polluted water treatment via the newly fabricated MIL-88B(Fe)–Ag/TiO2 nanotubes/Ti plate with multiple functions.

    关键词: Photocatalyst,Ag/TiO2 nanotubes/Ti,MIL-88B(Fe),Water treatment,Disinfectant,Adsorbent

    更新于2025-09-04 15:30:14