- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Insight into the Z-scheme heterostructure WO3/g-C3N4 for enhanced photocatalytic degradation of methyl orange
摘要: WO3 nanosheets and its hybridized nanocomposite, WO3/g-C3N4, were prepared by a simple direct precipitation method. The as-prepared WO3/g-C3N4 showed enhanced photocatalytic activity toward degrading methyl orange (MO). The ?O2 ?, which played key role in the photocatalytic oxidation process, were clearly identified and quantitationally determined by the trapping experiment and nitroblue tetrazolium (NBT) probing method. Z-scheme photocatalytic mechanism was proposed accordingly.
关键词: photocatalysis,WO3/g-C3N4,Nanocomposites,Semiconductors
更新于2025-09-23 15:21:21
-
Highly Efficient Solara??Catalytic Degradation of Reactive Black 5 Dye Using Mesoporous Plasmonic Ag/ga??C <sub/>3</sub> N <sub/>4</sub> Nanocomposites
摘要: An azo dye, Reactive Black 5 (RB5), was degraded by three photocatalysts of g-C3N4, Ag(2 %)/g-C3N4, and Ag(5 %)/g-C3N4 with the specific surface areas of 34.41, 28.70, and 35.58 m2 g?1 and the band gaps of 2.52, 1.56, and 1.71 eV under sunlight illumination, respectively. The results showed 40 mg/L of g-C3N4 could degrade completely 10 ppm RB5 at pH 3.4 within 10 min under sunlight irradiation with the first-order rate constant of 0.312 min?1. Under the same conditions, the complete degradation time of RB5 reduced to 5 and 7 min when the plasmonic nanocomposites of Ag (2 %)/g-C3N4 and Ag (5 %)/g-C3N4 were used as photocatalysts, respectively. Ag content had an important influence on the photocatalytic activity of g-C3N4 against RB5 so that Ag (2 %)/g-C3N4 possessed the best photocatalytic efficiency with the rate constant of 0.795 min?1. In fact, Ag nanoparticles through the surface plasmon resonance effects and by accepting the photogenerated electrons could improve the visible-light absorption and increase charge separation of g-C3N4. The results showed superoxide radical is the main oxidant in the photodegradation of RB5.
关键词: Surface Plasmon Resonance,Photocatalysis,RB5 dye,Graphitic carbon nitride,Ag/g-C3N4 nanocomposites
更新于2025-09-23 15:19:57
-
Plasmonic enhanced photoelectrochemical aptasensor with D-A F8BT/g-C3N4 heterojunction and AuNPs on a 3D-printed device
摘要: D-A F8BT/g-C3N4 type II heterojunction nanocomposite was employed as photoelectrode material for photoelectrochemical (PEC) aptasensor based on rolling circle amplification (RCA) with the assistance of 3D-printed device for carcinoembryonic antigen (CEA) detection. D-A type F8BT improved photocurrent response of g-C3N4 nanosheet after forming D-A F8BT/g-C3N4 type II heterojunction which effectively constructed built-in electric field and reduced electron-hole recombination. With the introduction of DNA-AuNP probes by π-stacking interaction, the local plasmon resonance (LSPR) of AuNPs enhanced local electric field, promoted the generation of electron-hole and further improved photocurrent response. When target CEA was in presence of sensing platform, sandwich construction was formed between two kinds of CEA aptamers and CEA on magnetic beads, triggering the RCA reaction to produce repeated sequences. Partial sequences of complementary-DNA in combination with RCA results was digested by Exo III enzyme to release signal-DNA, detaching DNA-AuNP probes from the surface of the F8BT/g-C3N4 by complementation, causing the attenuation of LSPR and the decrease of photocurrent response. Combing with 3D-printed device, this PEC aptasensor exhibited a linear response to CEA from 0.02 ng mL?1 to 50 ng mL?1 with detection limit of 6.7 pg mL?1, contributing to develop all organic polymer semiconductors as photoelectric materials in PEC study.
关键词: Type II heterojunction,Rolling circle amplification,Photoelectrochemical aptasensor,D-A F8BT/g-C3N4 nanocomposites,3D-printed device,Local surface plasmon resonance
更新于2025-09-23 15:19:57