- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Influence of Al-Si coating on microstructure and mechanical properties of fiber laser welded 22MnB5 steel
摘要: Fiber laser welding of as-received 22MnB5 steel with Al-10wt.%Si coating in butt configuration was performed. The influence of Al-Si coating on microstructure transformation and mechanical properties including tensile tests, fatigue tests and Erichsen cupping tests was investigated. Ferrite with Al enrichment (1.37 wt%) was found in the fusion zone (FZ) of coated welded joints with 15% area proportion, while nearly entire martensite structure composed the FZ in the case of de-coated joint. The strain localization was more likely to accumulate at the martensite/martensite interface rather than the ferrite/martensite interface due to the higher kernel average misorientation (KAM) values. Microhardness of the FZ in coated welded joints dropped by 50HV compared with that of de-coated welded joints. However, tensile properties were not affected since failure occurred at base metal (BM). Fatigue samples of coated welded joints showed better performance than the de-coated ones, suggesting that the ferrite in the FZ had positive effect on fatigue lives under cycling load conditions. The Erichsen cupping tests showed similar Erichsen values (5.60 mm and 5.67 mm) for de-coated and coated welded joints. An opposite effect of ferrite on Erichsen cupping tests was obtained. The peak force required for deformation dropped by 35% with Al-10wt.%Si coating.
关键词: Microstructure,Al-Si coating,Mechanical properties,Fiber laser welding,22MnB5 steel
更新于2025-11-28 14:24:20
-
Wear and Corrosion Resistance of Al0.5CoCrCuFeNi High-Entropy Alloy Coating Deposited on AZ91D Magnesium Alloy by Laser Cladding
摘要: In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the microstructure of the coating. The wear resistance and corrosion resistance of the coating were evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively. The results show that the coating was composed of a simple FCC solid solution phase with a microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that of the same high-entropy alloy prepared by an arc melting method. The coating had better wear resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance of the coating was also better than that of the AZ91D matrix because the corrosion potential of the former was more positive and the corrosion current was smaller.
关键词: laser cladding,wear,AZ91D magnesium alloy,high-entropy alloy coating,corrosion
更新于2025-11-21 11:24:58
-
Effect of incorporation of sulphur on the structural, morphological and optical studies of CdSe thin films deposited by solution processed spin coating technique
摘要: Ternary compound semiconductor CdSexS1-x (x = 1, 0.8, 0.6, 0.4, 0.2 and 0) thin films were prepared on glass substrates by using simple solution processed spin coating technique. Cadmium acetate, sodium selenosulfate and thiourea were used as source materials for Cd2+, Se2? and S2? ions, while triethanolamine was used as a capping agent. The 25% concentred NH4OH solution was used as a complex reagent and also used to adjust the pH of the final solution ~ 11. The deposition conditions (rotation speed 2000 rpm for 30 s and substrate dried in the air at 120 °C for 2 min) were remain same for all the samples. The as-deposited thin films on glass substrate were annealed at 350 °C for 30 min. The X-ray diffraction pattern shows that all the samples were polycrystalline in the nature with hexagonal structure. The most of prepared thin films were highly textured along (002) plane and peak position for plane (002) is shifted with change in composition ‘x’. The average crystallite size in CdSexS1-x thin films were found between 62.6 nm to 93.4 nm. Scanning electron microscopy images showed uniform deposition morphology with spherical shaped grains distributed over entire glass substrate. Samples CdSe0.8S0.2 and CdSe0.6S0.4 thin films indicated interesting morphological features with the combination of spherical shaped nanoparticles and interconnected nanofibers which form hierarchical flowerlike micro-structure. Energy dispersive X-Ray studies confirmed that thin films were having approximately same stoichiometry of atomic ratio of elements Cd, Se and S as present in volumetric ratio of the reactants in chemical solution. Fourier transform infrared studies confirmed the formation of the Cd(Se,S) bonding in materials. The optical band gap of CdSexS1-x thin films were found as direct band gap in the range of 1.82 eV to 2.32 eV. As the incorporation of sulphur element increases, the band gap of CdSexS1-x thin film also increases. The CdSexS1-x thin films can be used as absorption layer in solar photovoltaic cell which is due to wide and fine tenability of the energy band gap.
关键词: Nanofibers,Spin coating,Absorption layer,cadmium sulfide,Cadmium selenide,Hierarchical flowerlike microstructure,Ternary compound semiconductor
更新于2025-11-21 11:18:25
-
Heterogeneous Growth of Continuous ZIF-8 Films on Low-Temperature Amorphous Silicon
摘要: Thin amorphous silicon films, deposited at low temperature by Inductively Coupled Plasma Chemical Vapor Deposition, have, for the first time, been employed as substrate for ZIF-8 growth. In order to investigate the role of the surface chemistry on the nucleation process, films have also been grown on other silicon-based substrates such as H-terminated Si(100), SiO2 and quartz. Film preparation was carried out at room temperature using a mixed Zn nitrate and imidazole solution in methanol or ethanol. Using methanol, continuous ZIF-8 films were obtained on amorphous Si and H-terminated Si(100), while less homogeneous films were formed on the other surfaces. In ethanol, slower growth rates occurred and thinner films, compared to the ones in methanol, were obtained. These slower rates highlight the different effects of the four surfaces on the growth process. These differences have been related to the silanol density of the surfaces and to the Lewis basic strength which affect imidazole moiety deprotonation. H-terminated Si(100) and amorphous Si turned out to be the most reactive surfaces, whereas on quartz and, especially, on SiO2 reactivity was much lower. Experimental results have been validated by the DFT modelling of the proton exchange, which takes place between the imidazole group and the surface. Finally, the VOCs adsorption capability of ZIF-8 films grown on amorphous silicon has been evaluated through temperature desorption experiments.
关键词: a-Si layer,ZIF-8 coating,growth mechanisms,VOCs adsorption,surface chemistry
更新于2025-11-21 11:03:25
-
Dopamine-Mediated Assembly of Citrate-Capped Plasmonic Nanoparticles into Stable Core-Shell Nanoworms for Intracellular Applications
摘要: Plasmonic nanochains, derived from the one-dimensional assembly of individual plasmonic nanoparticles (NPs), remain infrequently explored in biological investigations due to their limited colloidal stability, ineffective cellular uptake, and susceptibility to intracellular disassembly. We report the synthesis of polydopamine (PDA)-coated plasmonic “nanoworms” (NWs) by sonicating citrate-capped gold (Cit-Au) NPs in a concentrated dopamine (DA) solution under alkaline conditions. DA mediates the assembly of Cit-Au NPs into Au NWs within 1 min, and subsequent self-polymerization of DA for 60 min enables the growth of an outer conformal PDA shell that imparts stability to the inner Au NW structure in solution, yielding “core–shell” Au@PDA NWs with predominantly 4–5 Au cores per worm. Our method supports the preparation of monometallic Au@PDA NWs with different core sizes and bimetallic PDA-coated NWs with Au and silver cores. The protonated primary amine and catechol groups of DA, with their ability to interact with Cit anions via hydrogen bonding and electrostatic attraction, are critical to assembly. When compared to unassembled PDA-coated Au NPs, our Au@PDA NWs scatter visible light and absorb near-infrared light more intensely, and enter HeLa cancer cells more abundantly. Au@PDA NWs cross the cell membrane as intact entities primarily via macropinocytosis, mostly retain their inner NW structure and outer PDA shell inside the cell for 24 h, and do not induce noticeable cytotoxicity. We showcase three intracellular applications of Au@PDA NWs, including label-free dark-field scattering cell imaging, delivery of water-insoluble cargos without pronounced localization in acidic compartments, and photothermal killing of cancer cells.
关键词: 1D assembly,citrate-capped nanoparticles,polydopamine coating,photothermal killing,intracellular delivery,plasmonic nanoworms,dark-field scattering imaging
更新于2025-11-19 16:56:42
-
The coherence between TiO2 nanoparticles and microfibrillated cellulose in thin film for enhanced dispersal and photodegradation of dye
摘要: Microfibrillated cellulose (MFC) was used to enhance the dispersal and photocatalytic properties of TiO2 nanoparticles. With the small amount of MFC (0.1 wt.% or 0.3 wt.%), TEM images showed that particle agglomeration was greatly minimized due to the coherence between TiO2 nanoparticles and MFC. The surface area and pore volume of TiO2 nanoparticles was enhanced as proven in N2 adsorption-desorption analysis. Thermogravimetric and Fourier transform infrared spectra further confirmed the presence of MFC in TiO2/MFC coating solution. Using commercial adhesive, TiO2 and TiO2/MFC were spray coated on polyvinyl chloride sheet. The photocatalytic thin films were examined using scanning electron microscope with Energy dispersive X-ray analysis. The presence of MFC was not only helpful to enhance particle dispersal but also supportive to increase the hydrophilicity of the thin film. In comparison to TiO2 coating, the films were capable to adsorb 50% more methylene blue in 90 min. TiO2/MFC coatings removed 90% of methylene blue dye in 90 min under UV irradiation.
关键词: Spray coating,Photocatalysis,Dye,TiO2 nanoparticles,Microfibrillated cellulose,Adsorption
更新于2025-11-19 16:56:35
-
Multi-scale ordering in highly stretchable polymer semiconducting films
摘要: Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π–π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films.
关键词: charge carrier mobility,conjugated polymers,solution shearing,stretchable semiconductors,roll-to-roll coating,multi-scale ordering
更新于2025-11-19 16:56:35
-
Ultrathin, Core–Shell Structured SiO <sub/>2</sub> Coated Mn <sup>2+</sup> ‐Doped Perovskite Quantum Dots for Bright White Light‐Emitting Diodes
摘要: All-inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion-exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well-controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light-emitting diode (LED) is successfully prepared by the combination of a blue on-chip LED device and the above perovskite mixture. The as-prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color-rendering index of Ra = 91, demonstrating their broad future applications in solid-state lighting fields.
关键词: quantum dots,white light-emitting diodes,core–shells,Mn2+-doping,SiO2-coating
更新于2025-11-14 15:32:45
-
One-step fabrication of effective mesoporous layer consisted of self-assembled MgO/TiO<sub>2</sub> core/shell nanoparticles for mesostructured perovskite solar cells
摘要: perovskite directly, which can not only passivate surface defects and reduce charge-suppressed J-V hysteresis. Meanwhile, the photovoltaic characteristics and the well-power conversion efficiency (PCE) was increased from 13.13% to 16.30% with well-interface and electrons transfer in PSCs. Based on the mesoporous layer consisting of nanoparticles instead of adding an additional surface modified layer for mesostructured recombination, but also facilitate charge-extraction at the mesoporous layer/perovskite perovskite solar cells (PSCs). An amorphous ultrathin outer nanolayer of MgO was Such self-assembled MgO/TiO2 core/shell nanostructures would retain the mesoporous of PSCs was 1.00 V, 4.2% higher than the uncoated TiO2 based PSCs, and the obtained structure feature, supply more contact interface of MgO/TiO2 and separate the TiO2 and conformally coated onto TiO2 core nanoparticles in a one-step bottom-up approach. proposed an efficient nanoparticulate mesoporous layer consisted of coated TiO2 optimized MgO-coated TiO2 nanoparticles, the corresponding open circuit voltage (VOC) Considering the intrinsic rich defect, poor H2O or UV light stability of TiO2, we resistance is obtained for the cell based on m-TiO2 with MgO coating. In addition, we behaved junction property were further clarified by the ideal model, a much lower series provided an easy regulated uniform coating route to fabricate well-defined core-shell nanoparticles with modified properties.
关键词: Uniform coating,mesoporous layer,Core-shell nanostructure,Perovskite solar cells
更新于2025-11-14 15:27:09
-
Morphology Tuning of ZnO/P3HT/P3HT-b-PEO Hybrid Films Deposited via Spray or Spin Coating
摘要: Hybrid films of zinc oxide (ZnO) and poly(3-hexylthiophen-2,5-diyl) (P3HT) show promising characteristics for application in hybrid bulk heterojunction solar cells (HBSCs). However, the incompatibility of ZnO and P3HT may lead to a reduced interface area, thus reducing the probability of exciton separation and consequently lowering solar cells efficiencies. Here, a diblock copolymer P3HT-b-poly(ethylene oxide) (PEO) is introduced to improve the interface between ZnO and P3HT. ZnO is synthesized via a block copolymer assisted sol-gel approach and the used zinc precursor is directly incorporated into the PEO blocks. Thus, the possibility of aggregation is reduced for both, the inorganic and the organic components and a good intermixing is ascertained. Two deposition methods, namely spray and spin coating are compared with respect to the resulting film structure, which is investigated with scanning electron microscopy (SEM) and time-of-flight grazing-incidence small-angle neutron scattering (TOF-GISANS) measurements. Both, the surface and inner morphologies reveal that the spin coated samples possess smaller and less diverse domain sizes than the sprayed films. Due to the advantage of spray coating in large-scale production, the morphology of the sprayed samples is tailored more meticulous by changing the weight fraction of ZnO in the films. The sprayed hybrid films show smaller domains and less aggregation with decreasing amount of ZnO. This reveals that both, the deposition method and composition of the ZnO/P3HT/P3HT-b-PEO hybrid films play an important role for the film morphology and thus for improving the performance of HBSCs in future application.
关键词: spray coating,morphology,spin coating,ZnO/P3HT/P3HT-b-PEO,TOF-GISANS
更新于2025-11-14 15:19:41