- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Liquid Crystal-Induced Myoblast Alignment
摘要: The ability to control cell alignment represents a fundamental requirement toward the production of tissue in vitro but also to create biohybrid materials presenting the functional properties of human organs. However, cell cultures on standard commercial supports do not provide a selective control on the cell organization morphology, and different techniques, such as the use of patterned or stimulated substrates, are developed to induce cellular alignment. In this work, a new approach toward in vitro muscular tissue morphogenesis is presented exploiting liquid crystalline networks. By using smooth polymeric films with planar homogeneous alignment, a certain degree of cellular order is observed in myoblast cultures with direction of higher cell alignment corresponding to the nematic director. The molecular organization inside the polymer determines such effects since no cell organization is observed using homeotropic or isotropic samples. These findings represent the first example of cellular alignment induced by the interaction with a nematic polymeric scaffold, setting the stage for new applications of liquid crystal polymers as active matter to control tissue growth.
关键词: liquid crystalline alignments,liquid crystalline network,cell alignment,biomaterials,muscular tissue engineering
更新于2025-11-21 11:01:37
-
Modification of TiO <sub/>2</sub> (1?1?0)/organic hole transport layer interface energy levels by a dipolar perylene derivative
摘要: Our photoemission study reveals that the work function of TiO2(1 1 0) decreases by up to 1.5 eV upon deposition of 9-(bis-(p-(tert-octyl)phenyl)amino)-perylene-3,4-dicarboxylic anhydride (BOPA-PDCA). This effect is attributed to a chemical reaction of TiO2(1 1 0) and the molecular anhydride group, as well as the molecular dipole. Analysis of the film thickness dependent photoemission and metastable atom electron spectroscopy data reveals that for low coverage the perylene backbone of BOPA-PDCA is almost parallel to the substrate surface and higher coverage leads to an orientational transition to essentially upright standing molecules. Comparing the energy-level alignment between TiO2(1 1 0) and the hole transport materials N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) without and with the BOPA-PDCA interlayer, we find that the perylene derivative has a positive impact on the level alignment for dye-sensitized solar cells with high open-circuit voltages.
关键词: solid state dye-sensitized solar cell,titanium dioxide,energy-level alignment,ultraviolet photoelectron spectroscopy,metastable atom electron spectroscopy,perylene
更新于2025-09-23 15:23:52
-
A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography
摘要: Purpose: Improve mapping and registration of longitudinal view on histopathology vessels in a three-dimensional alignment procedure for postmortem quantitative coronary plaque analyses. This new procedure is applied and results shown using calcified coronary plaque analyses within post-mortem computed tomography angiography (PMCTA), optical coherence tomography (OCT) and the gold standard of histopathology. Results: In total, 338 annotated histopathology images were included, 166 PMCTA transversal images and 285 OCT images were aligned in the comparison. The results from the comparison using the alignment procedure showed overall that the calcified plaques seem to be overestimated by PMCTA and underestimated by OCT. Conclusions: The 3D fusion approach, aligning the images of PMCTA, OCT and histopathology as gold standard allowed for a slice-based comparison of the different modalities. The results showed that PMCTA overestimates the calcified plaques while OCT underestimates these, compared to histopathology.
关键词: Alignment,Calcified coronary plaques,Histopathology,Optical coherence tomography,Postmortem-computed tomography angiography
更新于2025-09-23 15:23:52
-
Band Alignment of MoTe <sub/>2</sub> /MoS <sub/>2</sub> Nanocomposite Films for Enhanced Nonlinear Optical Performance
摘要: Band alignment is a key issue for the optoelectronics based on 2D layered transition metal dichalcogenides (TMDs) heterostructures. Herein, band alignment of MoTe2/MoS2 mixed heterostructure is measured with high-resolution X-ray photoelectron spectroscopy. The MoTe2/MoS2 heterostructure belongs to type-II heterostructure with the conduction band offset of 0.46 eV and the valence band offset of 0.9 eV. The stronger saturable absorption is observed in MoTe2/MoS2 heterostructure film compared with that of pure MoTe2 and MoS2 nanofilms at the same condition. An energy-level model combined with Runge–Kutta algorithm is used to understand the enhancement mechanism. It is found that the interlayer transition from MoTe2/MoS2 heterojunction plays an important role in the nonlinear optical enhancement. Meanwhile, band structure of MoTe2/MoS2 heterostructure is calculated by the first principles. The contributions of the MoTe2 and MoS2 to the heterojunction are almost equal and the valence band maximum and conduction band minimum exist in MoTe2 and MoS2 separately. This structure can form the interlayer carriers easily. The results suggest that the band alignment of TMDs paves the way for the type-II heterostructure for enhanced nonlinear response in the development of optical modulator, ultrafast laser mode lockers, saturable absorbers, and optical switches.
关键词: molybdenum disulfide (MoS2),band alignment,saturable absorption,heterostructure,molybdenum telluride (MoTe2)
更新于2025-09-23 15:23:52
-
[Advances in Imaging and Electron Physics] || superconductors and magnetic electron lenses
摘要: The use of superconductors seems a logical step if one wants to make iron-free magnetic lenses or to reduce the dimensions of conventional lenses since, when decreasing the coil size, the current density is increased. In the 1960s and 1970s, research mainly concentrated on the applicability of superconductors to magnetic electron lenses, and took place on a relatively large scale. This is reviewed in Section 2, after a general introduction into superconductivity in Section 1. Superconducting lenses and microscopes did not become popular due to their inconvenient operation and the lack of interest in high-voltage electron microscopy. High-voltage microscopy has been one of the main reasons for working on strong magnetic lenses and, consequently, on the utilization of superconductors. In 1986, with the discovery of high-temperature superconductivity, discussion on the applicability of superconductors to magnetic electron lenses was reopened. In the past, one of the most serious disadvantages in operating superconducting lenses had been related to the use of liquid helium refrigeration, so high-T c superconductors might be employed to overcome this problem, because their cooling demands are much more relaxed. However, especially during the first years of high-Tc superconductivity, despite their high operating temperatures, the materials themselves seemed extremely unfriendly, as they were brittle, sensitive to water, unstable, and difficult to produce. Fortunately, most of these disadvantages have now disappeared and the discussion concerning their utilization assumes a more fundamental character in the sense that most of the properties of the high-Tc materials are known, though a sound theoretical basis has not yet been defined. The properties of high-T c superconductors are the subject of Section 3. The question whether high-Tc superconductors are more appropriate for applications in particle optics than their classical counterparts was considered to be an interesting research topic. Therefore, this work was started as a feasibility study to the use of high-temperature superconductors in particle optics. Most short-term applications in this field were expected to exploit the high current density of these materials at temperatures above liquid helium, so this work concentrated on magnetic lenses as one of the most straightforward high current density applications. Since conventional iron circuit lenses are already used to their limits, as set by the saturation of the ferromagnetic circuit, significant improvements are to be expected only from iron-free lenses or highly saturated pole piece lenses. Their performance is restricted by the current density allowed in the windings and, further, for the iron-free lens, by the attainable mechanical tolerances, since, in the absence of iron, a lack of axial symmetry in the windings directly results in parasitic aberrations. For making small iron free lenses, high-Tc thin films are potentially interesting candidates, as they possess a high current density and can be patterned very accurately using lithographic techniques. Advantages to be expected from thin film lenses are smaller dimensions and better optical properties. An overview of fabrication techniques for high-Tc thin films is given in Section 4. The first attempt to make a coil in a superconducting thin film, using co-evaporated YBa2Cu3O7?x films, is the subject of Section 5. A thin film has to be patterned with some form of spiral in order to obtain a coil. Therefore, thin film lenses basically do not possess full axial symmetry. The relationship between the geometry of a flat coil and its optical properties is given in Section 6. The geometry of a feasible thin film lens element, along with its corresponding optical properties, is given in Section 7 while the technology used to fabricate this lens element is the subject of Section 8. Finally, based upon the work presented here, Section 9 treats the potential applicability of high-Tc superconductors in instruments that employ particle beams.
关键词: magnetic electron lenses,High-Tc superconductors,thin films,capacitive alignment,lens design,YBa2Cu3O7?x,superconductivity,electron microscopy
更新于2025-09-23 15:23:52
-
Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu <sub/>2</sub> O Polyhedra Arising from Tunable Interfacial Band Alignment
摘要: ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance (EPR) spectra agree with these experimental observations. Time-resolved photoluminescence (TRPL) profiles provide charge transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O (110)/ZnS (200) plane interface. A modified Cu2O–ZnS band diagram is presented. Density functional theory (DFT) calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing charge transfer across the Cu2O (110)/ZnS (200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.
关键词: interfacial charge transfer,zinc sulfide,cuprous oxide,facet-dependent properties,heterojunctions,band alignment
更新于2025-09-23 15:23:52
-
Energy disorder and energy level alignment between host and dopant in organic semiconductors
摘要: Energy level alignment between host and dopant molecules plays a critical role in exciton formation and harvesting in light emission zone of organic light-emitting diodes. Understanding the mechanism for predicting energy level alignment is thus important in materials selection for fabricating high-performance organic light-emitting devices. Here we show that host-dopant energy level alignment strongly depends on film thickness and substrate work function by using X-ray and ultraviolet photoemission spectroscopy. Invariant Gaussian density of states fails to explain the experimental data. We speculate that energy disorder in molecules next to the surface dictates the alignment. Ultraviolet photoemission spectroscopy measurements of several archetypical organic semiconductors confirm our speculation. An empirical interface disorder function is derived and used to construct a functional Gaussian density of states to compute host energy levels. Host-dopant energy level alignment is then computed by applying the universal energy alignment rule and is found in excellent agreement with the experimental data.
关键词: Host-dopant systems,Organic semiconductors,Energy level alignment,Photoemission spectroscopy,Energy disorder
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) - Tuebingen/Reutlingen, Germany (2018.3.18-2018.3.22)] 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) - Impact of Alignment Point Distance Distribution on SPAAM Calibration of Optical See-Through Head-Mounted Displays
摘要: The use of Optical See-Through Head-Mounted Displays (OST-HMDs) for presenting Augmented Reality experiences has become more common, due to the increasing availability of lower cost head-worn device options. Despite this growth, commercially available OST hardware remains devoid of the integrated eye-tracking cameras necessary for automatically calibrating user-specific view parameters, leaving manual calibration methods as the most consistently viable option across display types. The Single Point Active Alignment Method (SPAAM) is currently the most-cited manual calibration technique, due to the relaxation of user constraints with respect to allowable motion during the calibration process. This work presents the first formal study directly investigating the effects that alignment point distribution imposes on SPAAM calibration accuracy and precision. A user experiment, employing a single expert user, is presented, in which SPAAM calibrations are performed under each of five conditions. Four of the conditions cross alignment distance (arm length, room scale) with user pose (sitting, standing). The fifth condition is a control condition, in which the user is replaced with a rigidly mounted camera; the control condition removes the effect of noise from uncontrollable postural sway. The final experimental results show no significant impact on calibration due to user pose (sitting, standing). The control condition also did not differ from the user produced calibration results, suggesting that posture sway was not a significant factor. However, both the user and control conditions show significant improvement using arm's length alignment points over room scale alignments, with an order of magnitude difference in eye location estimate error between conditions.
关键词: Optical see-through head-mounted display,Augmented reality,Single point active alignment method (SPAAM)
更新于2025-09-23 15:23:52
-
Research on the influence of alignment error on coupling efficiency and beam quality for Gaussian beam to multimode fiber
摘要: The effect of alignment error on the coupling efficiency and beam quality of a Gaussian beam coupled into a large-core multimode fiber is studied in this paper. The equations for evaluating the effect of alignment error on the coupling efficiency are derived separately, and verified with the method of simulation. The calculation and simulation results obtained are highly consistent. In the same way, the effects of alignment error on the beam power distribution are discussed. The results show that the lateral error will change the path of partial light to a large extent, and have a greater influence on the power distribution of the Gaussian beam than the longitudinal error and angular error do.
关键词: Multimode fiber,Coupling efficiency,Beam quality,Alignment error
更新于2025-09-23 15:23:52
-
Band Alignment of the CdS/Cu <sub/>2</sub> Zn(Sn <sub/>1-x</sub> Ge <sub/>x</sub> )Se <sub/>4</sub> Heterointerface and Electronic Properties at the Cu <sub/>2</sub> Zn(Sn <sub/>1-x</sub> Ge <sub/>x</sub> )Se <sub/>4</sub> surface: x = 0, 0.2, 0.4
摘要: The surface electronic properties of the light absorber and band alignment at the p/n heterointerface are key issues for high performance heterojunction solar cells. We investigated the band alignment of the heterointerface between cadmium sulfide (CdS) and Ge incorporated Cu2ZnSnSe4 (CZTGSe), with Ge/(Ge+Sn) ratios (x) between 0 and 0.4, by X-ray photoelectron, ultra-violet, and inversed photoemission spectroscopies (XPS, UPS, and IPES, respectively). In particular, we used interface-induced band bending in order to determine the conduction-band offset (CBO) and valence-band offset (VBO), which were calculated from the core-level shifts of each element in both the CdS overlayer and the CZTGSe bottom layer. Moreover, the surface electronic properties of CZTGSe were also investigated by laser-irradiated XPS. The CBO at the CdS/CZTGSe heterointerface decreased linearly, from +0.36 to +0.20 eV, as x was increased from 0 to 0.4; in contrast, the VBO at the CdS/CZTGSe heterointerface was independent of Ge content. Both UPS and IPES revealed that the Fermi level at the CZTGSe surface is located near the center of the bandgap. The hole concentration at the CZTGSe surface was of the order of 1011 cm-3, which is much smaller than that of the bulk (~1016 cm-3). We discuss the differences in hole deficiencies near the surface and in the bulk on the basis of laser-irradiated XPS, and conclude that hole deficiencies are due to defects distributed near the surface with densities that are lower than in the bulk, and the Fermi level is not pinned at the CZTGSe surface.
关键词: Solar cell,Kesterite,IPES,XPS,Band alignment,CZTGS,UPS
更新于2025-09-23 15:23:52