- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Laser-Induced Graphene-Based Platforms for Dual Biorecognition of Molecules
摘要: Expanding the single molecule detection, enabled by laser-induced graphene (LIG) technology, for portable and on-site analysis, a dual molecule system with a two-working electrode architecture was developed, for ascorbic acid (AA) and amoxicillin (AMOX) detection, which are currently used in aquaculture and persist as water contaminants. The biorecognition element of each target compound was a suitable molecularly-imprinted polymer (MIP). The AMOX MIP was developed herein for the first time and assembled by electropolymerization of eriochrome black T (EBT). It showed a wide linear response from 100 nM to 50 μM, with a sensitivity of -13.32 μA/decade. Calibration curves revealed good squared correlation coefficients (R2 > 0.99) with a limit of detection (LOD) of 11.98 nM. AA MIP was assembled according to previous work reported in the literature, displaying a linear response from 1.5 mM to 4 mM and a sensitivity of 1.356 μA/decade. The developed dual-LIG device was further tested in real samples and successfully applied to the analysis of binary mixtures prepared in environmental water samples from a well. Overall, the proposed device allows in-situ analysis of two different molecules, holds an exceptionally low-cost design when compared to competing architectures in the literature, and, the fabrication method here employed offers the possibility of easily adjusting the desired architecture on demand.
关键词: Amoxicillin,Ascorbic acid,Laser-induced graphene,Molecularly-imprinted polymer technology,Dual detection
更新于2025-09-19 17:13:59
-
Toward Point-of-Care Drug Quality Assurance in Developing Countries: Comparison of Liquid Chromatography and Infrared Spectroscopy Quantitation of a Small-Scale Random Sample of Amoxicillin
摘要: Substandard antibiotics are thought to be a major threat to public health in developing countries and a cause of antimicrobial resistance. However, assessing quality outside of a laboratory setting, using simple equipment, is challenging. The aim of this study was to validate the use of a portable Fourier transform infrared (FT-IR) spectrometer for the identification of substandard antibiotics. Results are presented for amoxicillin packages from Haiti, Ghana, Sierra Leone, Democratic Republic of Congo, India, Papua New Guinea, and Ethiopia collected over the course of 6 months in 2017, including two field trips with the FT-IR to Ghana and Sierra Leone. Canadian samples were used as a control. Regarding drug quality, of 290 individual capsules of amoxicillin analyzed, 13 were found to be substandard with total active pharmaceutical ingredients (API) lying outside the acceptable range of 90–110%. Of these 13, four were below 80% API. The FT-IR reliably identified these outliers and was found to yield results in good agreement with the established pharmacopeia liquid chromatography protocol. We conclude that the portable FT-IR may be suitable to intercept substandard antibiotics in developing countries where more sophisticated techniques are not readily available.
关键词: developing countries,amoxicillin,portable FT-IR spectrometer,antimicrobial resistance,substandard antibiotics
更新于2025-09-09 09:28:46