- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications
摘要: We investigated the influence of Sb dopant concentration on the structural, electrical, and photoelectrochemical properties of the photocathode cuprous oxide (Cu2O) thin films. The photoabsorber p-type Cu2O films were prepared by electrodeposition in ionic electrolytes including copper sulfate and antimony sulfate at 333 K and pH=10. The small amount of Sb doping contributes to the fast Cu ion transport to the substrate and ion consumption; consequently, the p-type Cu2O with high crystalline quality can be reproducibly synthesized with high electrical stability. Among the various samples, the mole fraction of c(Sb)/[c(Cu)+c(Sb)] = 0.75 mol % exhibits the best electrical resistivity and improved transparency in the infrared region, which is involved with the fast overlap of the nuclei crystals under 5 nm from the high nuclei density. Additionally, the post-thermal annealed Sb-doped Cu2O sample reveals an enhanced photocurrent of ~0.65 mA/cm2 vs. RHE (reversible hydrogen electrode) without metal catalysts.
关键词: Preferred orientation,Post annealing,Antimony doping,Photoelectrochemical cell,Cuprous oxide
更新于2025-09-23 15:23:52