修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Chlorogenic Acid Supplementation Improves Multifocal Electroretinography in Patients with Retinitis Pigmentosa

    摘要: To evaluate the effect of chlorogenic acid supplementation in patients with retinitis pigmentosa, we evaluated objective change in visual function with multifocal electroretinography, along with visual acuity, visual field, standard electroretinography, and contrast sensitivity. Eighteen patients diagnosed with retinitis pigmentosa were enrolled in this prospective, non-comparative, single-arm study. Multifocal electroretinography, best-corrected visual acuity in Early Treatment Diabetic Retinopathy Study letters, total point score on visual field examination with Humphrey Field Analyzer II, electroretinography, and contrast sensitivity were measured and repeated after 3 months supplementation with chlorogenic acid. The amplitude of ring 5 was significantly higher on multifocal electroretinography after 3 months of chlorogenic acid supplementation (7.2 ± 9.5 vs 8.3 ± 10.8 nV/deg2, mean ± standard deviation, P = 0.022). There were no significant changes in the best-corrected visual acuity, total point score on Humphrey Field Analyzer, 30 Hz flicker amplitude on standard electroretinography, or contrast sensitivity. Chlorogenic acid may have a beneficial effect on the peripheral area at the margins of retinal degeneration, and should be considered as an anti-oxidant for the management of retinitis pigmentosa.

    关键词: Retinitis Pigmentosa,Oxidative Stress,Chlorogenic Acid,Retinal Degeneration,Antioxidants

    更新于2025-09-23 15:22:29

  • Thermally-stable low-loss polymer dielectrics enabled by attaching crosslinkable antioxidant to polypropylene

    摘要: Polymer dielectrics with low loss and high-temperature tolerance are extremely desirable as electrical energy storage materials for advanced electronics and electrical power applications. They can allow fast switching rates during power conversion and therefore achieve high power densities without thermal issues. Here we explore polypropylene (PP), the state of the art dielectric polymer, and present an innovative approach to substantially improve the thermal stability and concurrently reduce the dielectric loss of PP. In particular, crosslinkable antioxidant groups, hindered phenol (HP), are incorporated into PP via well-controlled chemical synthesis. The grafted HP can simultaneously serve as radical scavenger and crosslinker, thereby constraining thermally decomposed radicals and charge transport in the synthesized PP-HP copolymer. As a result, the upper-temperature limit of PP-HP is greatly extended to 190 ?C and the electrical loss is even gradually reduced upon thermal annealing. The copolymer after heating under 190 ?C exhibits better dielectric properties than the PP without any thermal treatment. The experimental results indicate that the PP-HP copolymers are promising materials for high temperature, low loss, and high voltage dielectric applications.

    关键词: energy storage,crosslinking,hindered phenol antioxidants,functionalized polypropylene,high-temperature low-loss dielectrics,electrical leakage current

    更新于2025-09-19 17:13:59

  • Response of Mustard Microgreens to Different Wavelengths and Durations of UV-A LEDs

    摘要: Ultraviolet A (UV-A) light-emitting diodes (LEDs) could serve as an effective tool for improving the content of health-promoting bioactive compounds in plants in controlled-environment agriculture (CEA) systems. The goal of this study was to investigate the effects of UV-A LEDs at different wavelengths (366, 390, and 402 nm) and durations (10 and 16 h) on the growth and phytochemical contents of mustard microgreens (Brassica juncea L. cv. “Red Lion”), when used as supplemental light to the main LED lighting system (with peak wavelengths of 447, 638, 665, and 731 nm). Plants were grown for 10 days under a total photon flux density (TPFD) of 300 μmol m?2 s?1 and 16-h light/8-h dark period. Different UV-A wavelengths and irradiance durations had varied effects on mustard microgreens. Supplemental UV-A radiation did not affect biomass accumulation; however, the longest UV-A wavelength (402 nm) increased the leaf area of mustard microgreens, regardless of the duration of irradiance. The concentration of the total phenolic content and α-tocopherol mostly increased under 402-nm UV-A, while that of nitrates increased under 366- and 390-nm UV-A at both radiance durations. The contents of lutein/zeaxanthin and β-carotene increased in response to the shortest UV-A wavelength (366 nm) at 10-h irradiance as well as longer UV-A wavelength (390 nm) at 16 h irradiance. The most positive effect on the accumulation of mineral elements, except iron, was observed under longer UV-A wavelengths at 16-h irradiance. Overall, these results suggest that properly composed UV-A LED parameters in LED lighting systems could improve the nutritional quality of mustard microgreens, without causing any adverse effects on plant growth.

    关键词: mustard microgreens,mineral elements,UV-A,antioxidants,light-emitting diodes,growth

    更新于2025-09-11 14:15:04

  • Antioxidant capacity of Camellia japonica cultivars assessed by near- and mid-infrared spectroscopy

    摘要: Main conclusion Camellia japonica antioxidant capacity highly differs among its cultivars and could be successfully predicted by near- and mid-infrared spectroscopy. Camellia japonica is a Theaceae family species which are mainly used as an ornamental plant due to its colourful flowers presenting over than 32,000 recognized cultivars. However, this species have been somehow neglected due to the popular tea source, Camellia sinensis. In this study, the antioxidant profile (total phenolic and flavonoid content and total antioxidant capacity—TPC, TFC and TAC) of 31 C. japonica cultivars leaves was determined and further assessed by near- and mid-infrared spectroscopy. The leaves’ antioxidant profile was revealed to be highly dependent on the cultivars analysed being in some cases distinct even for different trees of the same cultivar. Near- and mid-infrared spectroscopy proved to be suitable techniques to predict the total phenolic and flavonoid content as well as the total antioxidant capacity. The best results were obtained with near-infrared spectroscopy whose root mean square error of the prediction set samples was of 5.7?mg of gallic acid/g dry leaf; 3.5?mg catechin/g dry leaf and 3.3?mM Trolox/g dry leaf for TPC, TFC and TAC (with coefficients of the determinations equal to or higher than 0.93). Moreover, the range error ratios were higher than 15 meaning that the developed partial least-squares models are very good for calibration and quantification determinations according to the guidelines for near-infrared models development and maintenance. In this work, the antioxidant profile of several C. japonica cultivars leaves was determined for the first time, being that a rapid and low cost spectroscopic-based method was also proposed for its determination.

    关键词: Antioxidants,Camellia japonica cultivars,Chemometrics,Phenolic compounds,Flavonoids,Infrared spectroscopy

    更新于2025-09-10 09:29:36

  • The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers

    摘要: Solanum lycopersicum L. is among the healthiest fruits/vegetables due to its richness in bioactive compounds. However, its fruits from off-season (usually obtained in greenhouses that block UV-rays) have lower reputation than the ones of in-season/field productions. We hypothesise that moderate UV-A/UV-B irradiation during fruit development is able to improve its bioactive compounds and sensorial attributes, increasing its healthy properties. We supplemented for 30 days ‘MicroTom’ fruiting plants with two daily doses of UV-A (1 or 4 h) and UV-B (2 or 5 min). Irradiated plants showed higher ripening synchronization and produced more and smaller fruits. UV-A irradiation stimulated the fruit’s antioxidant capacity, and the antiradical activity by the accumulation of phenolic compounds including the flavonoids. Only the UV-A1 h condition promoted the accumulation of ortho-diphenols in tomato fruits. Regarding the consumers’ preference for aroma/taste, a consumers’ panel test ranked the tomatoes as UV-A 1 h, UVA 4 h, Control, UV-B 5 min and UV-B 2 min. We conclude that the supplementation of UV-A during pre-harvest is particularly effective in increasing ripening synchronization and fruit’s nutritional properties, potentially making these fruits more appealing to consumers.

    关键词: Nutritional value,Antioxidants,Pre-harvest-irradiation,Metabolism modulation,Phenolic compounds,Ultraviolet supplementation

    更新于2025-09-10 09:29:36