- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Preparation of Pd/TiO2 nanowires for the photoreduction of CO2 into renewable hydrocarbon fuels
摘要: In this study, various Pd-loaded TiO2 nanowire (Pd/TiO2–NW) catalysts were prepared using the hydrothermal method, and their photocatalytic activity toward the photoreduction of CO2 into methane (CH4) and carbon monoxide (CO) was evaluated. The photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, UV–vis spectroscopy, X-ray photoelectron spectroscopy and photoluminescence analysis. The addition of Pd on TiO2–NWs can improve the production yield of CO2 photoreduction to CH4 and CO. The 0.5 wt% Pd/TiO2–NWs showed optimal CO and CH4 yields of 50.4 and 26.7 μmol/g, respectively. Moreover, the 0.5 wt% Pd/TiO2–NWs could be used repeatedly with only a small loss of photocatalytic activity noted after 30 days. Furthermore, a mechanism for the photoreduction of CO2 was proposed. Therefore, Pd/TiO2–NWs are an efficient photocatalyst for the reduction of CO2 to CH4 and CO.
关键词: Renewable hydrocarbon fuels,CO2 conversion,Photocatalyst,Pd-loaded TiO2 nanowires
更新于2025-09-23 15:23:52
-
Flame spray pyrolysis synthesized gold-loaded titanium dioxide photocatalyst for degradation of Rhodamine B
摘要: Gold-loaded titanium dioxide (Au-loaded TiO2) was synthesized by the flame spray pyrolysis method for using as photocatalyst. The synthesized Au-loaded TiO2 photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The photocatalytic degradation of Rhodamine B (RhB) dye solution over synthesized Au-loaded TiO2 was studied. The concentration of RhB was determined by UV–Vis spectrophotometry. For the photocatalytic activity, it was found that Au(1.00 mol%)-loaded TiO2 was a better photocatalyst than others under the same reaction conditions. The optimal conditions for photocatalytic degradation of RhB were found to be 0.6 g/L of photocatalyst concentration under UV light irradiation (UV–C 254 nm). The highest kinetic rate constant of photocatalyst was 0.0057 min?1 at the optimum conditions and the mechanism of the photocatalytic process had also been discussed.
关键词: Rhodamine B,Flame spray pyrolysis,Au-loaded TiO2,Degradation,Photocatalyst
更新于2025-09-09 09:28:46