修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Structural, electrical, optical and thermoelectric properties of e-beam evaporated Bi-rich Bi2Te3 thin films

    摘要: Bi-rich Bi2Te3 thin films are prepared at 300 K using e-beam evaporation technique. A source power of 45 W for e-beam was used. Post deposition, these as-deposited Bi-rich Bi2Te3 (Bi-BT-AD) films are annealed at 100 °C (Bi-BT-100), 200 °C (Bi-BT-200) and 300 °C (Bi-BT-300) for 1 h under a pressure of 3 × 10-4 Pa. X-ray diffraction measurements reveal the presence of Bi phase together with crystalline Bi2Te3 indicating the possible presence of Bi-rich Bi2Te3 phase in the Bi-BT-AD film. The broad peaks from Bi2Te3 (015) plane indicates nanocrystalline nature of particles. With annealing, no change in diffraction pattern is observed for Bi-BT-100. However, Bi-BT-200 and Bi-BT-300 films show the emergence of x-ray reflection from unknown phases around 2θ ~ 20° and 47°. This indicates Bi related secondary phase segregation and the thermodynamic instability for the presence of Bi in Bi2Te3 lattice. From Raman studies it is discerned that Bi secondary phase coexist along with the Bi-rich Bi2Te3 nanocrystalline grains. On vacuum annealing Bi-rich Bi2Te3 thin films prevails as evidenced from the p-type electrical characteristics, while excess Bi disappears and converts into an unknown minor phase. The resistivity of all the annealed films are ~ 0.9 × 10-4 Ωcm. The Seebeck coefficients also do not show any change and remain around 33 to 36 μV/K. Thermoelectric properties of Bi-BT-100 exhibit high power factors when measured at different ΔT with a maximum of ~ 17.5 × 10-4 W/K2m for ΔT=100 °C. Thus, unlike the near-stoichiometric thin films, Bi-rich thin films require low temperature annealing (~100 °C) to achieve optimized parameters. Bi-rich Bi2Te3 thin films also show higher power factor compared to the near-stoichiometric thin films. Thus, favourable thermoelectric properties can be achieved at 300 K for temperature sensitive device fabrication using Bi-rich Bi2Te3 thin films.

    关键词: Bismuth-rich bismuth telluride,thin films,electron-beam evaporation,power factor.

    更新于2025-09-23 15:23:52

  • Influence of In Doping on the Electronic Transport Properties of n-Type Cu0.008Bi2Te2.7Se0.3

    摘要: Doping is an effective approach to enhance the thermoelectric figure of merit (zT) of thermoelectric alloys by modifying their electronic structure. In this study, we investigated the influence of In doping on the electronic and thermal transport properties of n-type Cu0.008Bi2-xInxTe2.7Se0.3 (x = 0, 0.005, 0.01, and 0.015) polycrystalline alloys. The electrical conductivity of the alloys showed a moderate decreased by In doping. The Seebeck coefficient also decreased slightly. The bandgap Eg of the alloys widened slightly according to the Goldsmid–Sharp Eg formula. The band parameters of the conduction and valence bands were estimated using a two-band model. In the case of the In-doped samples, the concentration and mobility of electrons decreased simultaneously, resulting in a reduction in the electrical conductivity. However, the level of bipolar conduction remained unchanged even after doping because of the compensation of Eg widening and the band parameter modification. Meanwhile, the effect of In doping on the thermal conductivity of n-type Cu0.008Bi2Te2.7Se0.3 was found to be insignificant. Consequently, the zT of the alloy increased slightly to 1.12 at x = 0.05, while it decreased at higher doping levels.

    关键词: bipolar conduction,Thermoelectrics,single parabolic band model,bismuth telluride

    更新于2025-09-23 15:23:52

  • Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems

    摘要: Magnetic topological insulators (MTIs) are a novel materials class in which a topologically nontrivial electronic band structure coexists with long-range ferromagnetic order. The ferromagnetic ground state can break time-reversal symmetry, opening a gap in the topological surface states whose size is dependent on the magnitude of the magnetic moment. Doping with rare earth ions is one way to introduce higher magnetic moments into a material, however, in Bi2Te3 bulk crystals, the solubility limit is only a few percent. Using molecular beam epitaxy for the growth of doped (Sb,Bi)2(Se,Te)3 TI thin films, high doping concentrations can be achieved while preserving their high crystalline quality. The growth, structural, electronic, and magnetic properties of Dy, Ho, and Gd doped TI thin films will be reviewed. Indeed, high magnetic moments can be introduced into the TIs, which are, however, not ferromagnetically ordered. By making use of interfacial effects, magnetic long-range order in Dy doped Bi2Te3, proximity-coupled to the MTI Cr:Sb2Te3, has been achieved. Clearly, engineered MTI heterostructures offer new possibilities that combine the advantageous properties of different layers, and thus provide an ideal materials platform enabling the observation new quantum effects at higher temperatures.

    关键词: rare earth doping,MBE,topological insulators,heterostructure,bismuth telluride,antimony telluride

    更新于2025-09-23 15:22:29

  • Flexible nonvolatile resistive switching memory devices based on Bi<sub>2</sub>Te<sub>3</sub> nanosheets films

    摘要: Flexible nonvolatile resistive switching memory is a promising candidate for next generation storage technologies. Exploring new materials is of crucial importance to achieve further performances of flexible nonvolatile resistive switching memory. In this work, topological insulator bismuth telluride (Bi2Te3) nanosheets films were introduced into firstly, a typical sandwich construction of Ag/Bi2Te3/indium tin oxide/polyethylene terephthalate with good flexibility, which exhibits nonvolatile bipolar resistive switching characteristics of operation voltage, good mechanical flexibility, and good storage stability. Furthermore, trap-controlled space charge limited current, thermionic emission are the dominant conduction mechanisms in the carrier transport. This work will provide an opportunity for Bi2Te3 nanosheets to be used in flexible electronics application.

    关键词: Resistive switching,Bismuth telluride,Flexible memory,Nonvolatile,Filtration

    更新于2025-09-23 15:21:01

  • Laser Treatment as Sintering Process for Dispenser Printed Bismuth Telluride Based Paste

    摘要: Laser sintering as a thermal post treatment method for dispenser printed p- and n-type bismuth telluride based thermoelectric paste materials was investigated. A high-power fiber laser (600 W, 1064 nm) was used in combination with a scanning system to achieve high processing speed. A Design of Experiment (DoE) approach was used to identify the most relevant processing parameters. Printed layers were laser treated with different process parameters and the achieved sheet resistance, electrical conductivity, and Seebeck coefficient are compared to tube furnace processed reference specimen. For p-type material, electrical conductivity of 22 S/cm was achieved, compared to 15 S/cm in tube furnace process. For n-type material, conductivity achieved by laser process was much lower (7 S/cm) compared to 88 S/cm in furnace process. Also, Seebeck coefficient decreases during laser processing (40–70 μV/K and ?110 μV/K) compared to the oven process (251 μV/K and ?142 μV/K) for p- and n-type material. DoE did not yet deliver a set of optimum processing parameters, but supports doubts about the applicability of area specific laser energy density as a single parameter to optimize laser sintering process.

    关键词: additive manufacturing,design of experiment,laser sintering,thermoelectric,antimony telluride,bismuth telluride

    更新于2025-09-11 14:15:04

  • Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

    摘要: Bismuth telluride (Bi2Te3) thin films were prepared with various electrolyte temperatures (10°C–70 °C) and concentrations [Bi(NO3)3 and TeO2: 1.25–5.0 mM] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of Bi2Te3 thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [1.08 μW/(cm·K2)] was obtained at 3.75 mM. Therefore, to produce electrodeposited Bi2Te3 films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low (30 °C) and the electrolyte concentration should be set at 3.75 mM.

    关键词: Electrolyte temperature,Bismuth telluride,Electrolyte concentration,Thermoelectric,Electrodeposition

    更新于2025-09-09 09:28:46