修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Microstructure and Wear Resistance of 62Cu-38Zn Brass with Bionic Coupling Units Treated by Laser Cladding

    摘要: In order to improve the wear resistance of 62Cu-38Zn brass, bionic coupling units were fabricated by laser cladding using Ni-based, Fe-based and Co-based self-fluxing alloy powders. The microstructures, chemical composition and mechanical properties of the units were studied in this paper. Wear resistance of samples was examined by dry sliding wear. Good metallurgical bonding between the unit and substrate was obtained, and fine dendritic microstructure was resulted in the unit zone, which proved marked availability of laser cladding on brass. Laser cladding treatments with different self-fluxing alloy powders were beneficial to reinforcing the surface of brass and then improved its wear resistance with various results. The Ni-based alloy powders led to the best wear resistance amongst the all samples.

    关键词: wear resistance,laser cladding,bionic coupling units,microstructure,62Cu-38Zn brass

    更新于2025-11-21 11:18:25

  • [Laser Institute of America ICALEO? 2015: 34th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing - Atlanta, Georgia, USA (October 18–22, 2015)] International Congress on Applications of Lasers & Electro-Optics - Microstructural effects induced by laser shock peening for mitigation of stress corrosion cracking

    摘要: Stress corrosion cracking is a phenomenon that can lead to rapid, sudden failure of metallic products. In this paper we examine the mechanisms of SCC mitigation of stainless steel and brass samples using laser shock peening (LSP). The behavior of hydrogen within the crystal lattice is one of the most dominant contributors to SCC, where uptake of hydrogen strains the lattice and increases its hardness. Cathodic charging of the metallic samples in 1M sulfuric acid was performed in order to accelerate hydrogen uptake. Non-treated samples underwent hardness increases of 28%, but LSP treated samples only increased in the range of 0 to 8%, indicative that LSP keeps hydrogen from permeating into the metal. Mechanical U-bends subjected and MgCl2 environments are analyzed, to determine changes in fracture morphology. Surface chemical effects are addressed via Kelvin Probe Force Microscopy, which is used for finding changes in the work function caused by LSP treatment. A finite element model of material deformation from U-bending was developed to analyze and compare the induced stresses. With LSP, there is a potential for overprocessing the samples, whereby negative effects refinement, to corrosion martensite formation) can arise. Detection of any martensite phases formed is performed using x-ray diffraction. We find LSP to be beneficial for stainless steel but does not improve brass’s SCC resistance. With our analysis methods we provide a further understanding of the process whereby LSP reduces subsequently highlight SCC for important implementation of the process.

    关键词: Brass,Stainless steel,Hydrogen uptake,Stress corrosion cracking,Cathodic charging,Kelvin Probe Force Microscopy,Laser shock peening,Finite element model

    更新于2025-09-23 15:21:01

  • Synthesis of brass nanowires and their use for organic photovoltaics

    摘要: Preponderant electric conductivity, high transmittance properties, and large natural abundance of its main component are striking features of copper nanowire (Cu NW)-based thin films. Because they are easily synthesized via low-cost solution-based processes, copper nanowires are considered an affordable next-generation conductor for transparent electrodes. Copper nanowire applications are expected to become more popular over the next decade. However, copper nanowire itself has a tremendously high surface-to-volume ratio and an abundance of surface atoms which lead to its high reactivity with the external environment. This reactivity presents a challenge for the improvement the long-term stability of copper nanowires, as it directly affects their applications. This novel study demonstrates a process to protect copper nanowires with an ultrathin stable brass layer-Cu/Brass NWs. The final product exhibited a high performance comparable to commonly used electrodes with a low sheet resistance of 30 Ω/sq at 89% transparency. Moreover, the Cu/Brass NWs resisted oxidation corrosion as the amplitude resistance fluctuated only around 3 Ω/sq for 30 days. For performance verification, an organic solar cell was fabricated using a Cu/Brass NW-based transparent electrode. It yielded an efficiency of 5.85%, reaching nearly that of a conventional cell using indium tin oxide. This demonstrates that Cu/Brass NWs are very promising for future application in low-cost optoelectronic devices.

    关键词: Transparent electrode,Copper nanowire,Copper/brass nanowires,Electroless Zn plating,Organic solar cell

    更新于2025-09-23 15:19:57

  • Investigating the features of color laser marking process of galvanic chrome plating in order to create a controlled color image formation at given marking

    摘要: The article is devoted to the problems of laser marking of metal surfaces. The factors affecting the color formation during laser processing are considered. To assess the degree of influence of the material thermophysical characteristics on the final result, samples with different properties were used: steel and brass. In order to exclude the influence of other factors on the result, besides the material characteristics, the samples were chrome-plated to obtain the same thickness of the chromium layer. Samples were processed with the same laser parameters and the same marking modes. The results of the experiment showed the formation of various colors on the treated surface, which proves the influence of the thermophysical characteristics of the material being processed on the formation of the color gamma during laser processing.

    关键词: Color laser marking,Laser,Chrome steel,Chrome,Laser processing,Chrome-plated brass

    更新于2025-09-16 10:30:52

  • Interface Microstructure and Nanoindentation Characterization of Laser Offset Welded 5052 Aluminum to Press-Hardened Steel Using a Brass Interlayer

    摘要: Laser o?set welding of 5052 aluminum to press-hardened steel using a brass interlayer was carried out. The cross-sectioned macrostructure and tensile strength were governed by varying the thickness of the brass interlayer. The maximum tensile strength reached 56.4 MPa when the thickness of brass interlayer was 0.05 mm. Subsequently, the interface microstructure, the nanoindentation characterization, and the fracture behavior were evaluated experimentally by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDS), and micro-X-ray di?raction (micro-XRD), respectively. It was found that the intermetallic compound (IMC) layer at the interface consisted of an Fe2Al5 layer and an FeAl layer, and the estimated nanohardness of Fe2Al5, FeAl, and Fe3Al were 16.11 GPa, 9.48 GPa, and 4.13 GPa, respectively. The fracture of the joint with the 0.05 mm brass interlayer was a mixture of cleavage fracture and intergranular fracture, while that of the joint with the 0.1 mm brass interlayer exhibited the characterization of a major dendrite arm, leaving a metallurgical connected zone consisting of the Al2Cu and the α-Al phase.

    关键词: laser o?set welding,aluminum,press-hardened steel,brass interlayer,nanoindentation,interface microstructure

    更新于2025-09-11 14:15:04