- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Double-Mesoscopic Hole-Transport-Material-Free Perovskite Solar Cells: Overcoming Charge-Transport Limitation by Sputtered Ultra-Thin Al <sub/>2</sub> O <sub/>3</sub> Isolating Layer
摘要: The electrically insulating space layer takes a fundamental role in monolithic carbon-graphite based perovskite solar cells (PSCs) and it has been established to prevent the charge recombination of electrons at the mp-TiO2/carbon-graphite (CG) interface. Thick 1 μm printed layers are commonly used for this purpose in the established triple-mesoscopic structures to avoid ohmic shunts and to achieve a high open circuit voltage. In this work, we have developed a reproducible large-area procedure to replace this thick space layer with an ultra-thin dense 40 nm sputtered Al2O3 which acts as highly electrically insulating layer preventing ohmic shunts. Herewith, transport limitations related so far to the hole diffusion path length inside the thick mesoporous space layer have been omitted by concept. This will pave the way towards the development of next generation double-mesoscopic carbon-graphite based PSCs with highest efficiencies. Scanning electron microscope (SEM), energy dispersive x-ray analysis (EDX) and atomic force microscopy (AFM) measurements show the presence of fully oxidized sputtered Al2O3 layer forming a pseudo-porous covering of the underlying mesoporous layer. The thickness has been finely tuned for the achievement of both electrical isolation and optimal infiltration of the perovskite solution allowing full percolation and crystallization. Photo voltage decay, light-dependent and time-dependent photoluminescence measurements showed that the optimal 40 nm thick Al2O3 not only prevents ohmic shunts but also efficiently reduces the charge recombination at the mp-TiO2/CG interface and, at the same time, allows efficient hole diffusion through the perovskite crystals embedded in its pseudo-pores. Thus, stable VOC of 1 V using CH3NH3PbI3 perovskite has been achieved under full sun AM 1.5 G with stabilized device performance of 12.1%.
关键词: Perovskite solar cells,Al2O3 Space layer,Double-mesoscopic,Carbon-graphite,HTM-free,Sputtering,Interface recombination
更新于2025-09-19 17:13:59
-
[IEEE 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO) - Kiev (2018.4.24-2018.4.26)] 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO) - The use of Films of Metal-Containing Nanocomposites with a Silicon-Carbon Matrix in Thermal Imitators of the Components of Micro-and Nanoelectronics
摘要: The installation scheme and features of the technology for obtaining alloyed diamond-like silicon-carbon films are presented and the heating elements based on these films are created to be used as thermal imitators of micro- and nanoelectronical products and their modules with increased specific heat flux (such as microprocessors, high-frequency microcircuits of the transmit-receive modules, LEDs, lasers, etc.). The matrix of the alloyed diamond-like silicon-carbon film has an amorphous nanocomposite structure, into which the inclusions having nanodimensions and composed of chromium and its compounds with carbon are introduced. Due to the controlled change in the parameters of the process of film deposition, it is possible to obtain a given specific resistance of a doped diamond-like silicon-carbon film over a wide range: from 10-4 to 1014 (cid:525)·cm. The electrical resistance of the manufactured heating elements with dimensions of 7x30x1 mm on the basis of a diamond-like silicon-carbon film 1 (cid:541)m thick, doped with chromium, was 15 (cid:525). Using four such heating elements with a total resistance of 60 ohms made it possible to create a compact detachable thermal imitator of the electronic module with a maximum power of 806 W. Application of the developed thermal imitator accelerates the process of research and improvement of heat sink devices for products of micro- and nanoelectronics.
关键词: heating element,thermal imitator,micro- and nanoelectronical products,alloyed diamond-like carbon-graphite nanocomposite structure
更新于2025-09-09 09:28:46