- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interesting makeover of strontium hexaferrites for environment remediation from excellent photocatalysts to outstanding adsorbents via inclusion of Mn3+ into the lattice
摘要: Manganese incorporated strontium hexaferrites with composition SrMnxFe12-xO19 (x= 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 3.0, 4.0 and 5.0) were fabricated via chemical co-precipitation methodology. Various characterization techniques were employed to investigate the physical properties of the synthesized hexaferrites. Powder X-Ray Diffraction (XRD) patterns revealed the formation of hexagonal phase with P63/mmc space group. FE-SEM micrographs exhibited hexagonal morphology of the synthesized materials; particle size of 125-150 nm range was observed. EDX spectra unveiled the presence of desired elements. The lattice interplanar fringe width from HR-TEM images was observed to be 0.22 nm, 0.26 nm and 0.27 nm indexed to (114), (107) and (203) planes of the manganese doped strontium hexaferrite. Surface area of the synthesized hexaferrites was found to be in the range of ~7.8 to ~8.4 m2/g, scrutinized by Brunauer–Emmet–Teller (BET) plots. Saturation magnetisation values were found to decrease with increase in Mn content from 38.7 to 11.7 emu/g, albeit retaining sufficient magnetic strength to be recovered using an external magnet. Absorption edge for all the hexaferrites was found to lie in the visible region of the spectrum. The oxidation state of different elements present in synthesized hexaferrites was scrutinized using X- ray Photoelectron Spectroscopy (XPS). To explore the catalytic efficiency of the synthesized hexaferrites, photo-fenton degradation of methyl orange (MO), remazol deep red (RDR) and p-nitrophenol (PNP) was employed. All the synthesized hexaferrites were found to be highly proficient, degrading the pollutants upto ~98%. Interestingly, astonishing adsorption of ~92.7 % was showcased by SrMn5Fe7O19, prior to the addition of oxidizing agent indicating the symptomatic transformation from excellent photocatalyst to outstanding adsorbents via incorporation of Mn3+ into the lattice. The maximum adsorption capacity of 56.20 and 112.35 mg/g was observed for MO and RDR, respectively.
关键词: photo-fenton degradation,strontium hexaferrites,adsorption,chemical co-precipitation method,manganese substituted ferrites
更新于2025-11-14 17:03:37
-
Detoxification of dye contaminated water by Mn $$^{2+}$$ 2 + -doped ZnS nanostructures
摘要: Chemical co-precipitation route was successfully employed to synthesize polyethylene glycol-coated pure and doped Zn1?x Mnx S (0 ≤ x ≤ 0.1) nanoparticles. The crystallographic and morphological analyses have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of cubic crystal structure and quasi-spherical morphology has been revealed by XRD and TEM, respectively. The optical analyses have been done by UV–Vis absorption spectroscopy and energy resolved photoluminescence spectroscopy. Energy dispersive X-ray spectroscopy study has been carried to analyse the elemental composition. The doping concentration dependent photo-catalytic activity was checked to analyse the photo-catalytic potential of Zn1?x Mnx S nanoparticles under UV irradiation.
关键词: photo-catalytic activity,Chemical co-precipitation,Zn1?x Mnx S nanoparticles
更新于2025-11-14 15:26:12
-
Synthesis and Pholuminescence studies of polymer capped SnO2 nanoparticles synthesized by chemical co-precipitation method
摘要: In recent years many research works have been focused on the electrical and optical properties of metal oxides. In this present paper SnO2 nanoparticles have been synthesized by chemical co-precipitation method using different capping agents like EDTA (ethylene diamine tetra acetic acid), PVP (polyvinylpyrrolidone), PVA (polyvinyl alcohol) and studied the influence of capping agent on various properties of SnO2 nanoparticles. Structural, surface morphology, chemical analysis and luminescence properties of prepared SnO2 nanoparticles were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) attached with energy dispersive analysis of X-rays (EDAX) and photoluminescence studies (PL). X-ray diffraction study reveals the nano-size particle distribution of the prepared samples with tetragonal rutile structure in the range of 3 to 9 nm. FTIR spectra show the structural confirmation of SnO2 nanoparticles. Various PL signals were observed in the visible region around 375 nm to 600 nm due to oxygen vacancies and interfacial Sn vacancies present in the prepared nanosamples.
关键词: X-ray diffraction,scanning electron microscopy,Nano-size distribution,Chemical co-precipitation,Photoluminescence
更新于2025-09-04 15:30:14