- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides
摘要: One of the difficulties in measurements of relative humidity in a variety of environments is temperature-dependence especially at cold temperatures. Here, we report on the reduction and the compensation of temperature effects on humidity measurements using dual humidity sensors based on quartz crystal microbalance (QCM). Graphene oxide film is coated on quartz crystals as a humidity sensing layer for the detection of water sorption by the change of resonance frequency. Relative humidity in a test chamber, where dual QCM humidity sensors are located, is precisely controlled using a humidity generator at the temperature range from 20 °C to ?60 °C. It is found that single QCM humidity sensors measure humidity significantly higher than reference relative humidity by the generator as temperature is lowered due to the temperature-dependent resonance of quartz crystals. In an attempt to cancel out the temperature-dependent oscillation of QCM sensors, the ratio of resonance frequencies of dual QCM humidity sensors is used. Consequently, temperature-dependent errors in humidity measurement at low temperatures are evidently reduced. For the compensation of the remaining errors in the humidity measurement by dual QCM humidity sensors, a single formula is empirically obtained. After the compensation of low temperature effects, the dual QCM humidity sensors provide the measurement capability in terms of residual errors less than 1.1%rh throughout temperatures from 20 °C to ?60 °C. This study provides a useful insight to extend the applicability of QCM-based humidity sensors to environments with cold temperatures.
关键词: Compensation,Graphene oxide,Cold temperature,Quartz crystal microbalance,Humidity measurement,Humidity sensor
更新于2025-09-23 15:23:52