修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

7 条数据
?? 中文(中国)
  • Defects Inspection in Polycrystalline Solar Cells Electroluminescence Images Using Deep Learning

    摘要: This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the nondeterministic polynomial (NP) complete multicast routing problem (MRP). The main contribution is the extension of particle swarm optimization (PSO) from the continuous domain to the binary or discrete domain. First, a novel bi-velocity strategy is developed to represent the possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP, where 1 stands for a node being selected to construct the multicast tree, whereas 0 stands for being otherwise. Second, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in the continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the Operation Research Library (OR-library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly since it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on genetic algorithms, ant colony optimization, and PSO.

    关键词: Steiner tree problem (STP),particle swarm optimization (PSO),Communication networks,multicast routing problem (MRP)

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Synchrotron and optical probing of hybrid organic-inorganic perovskite halides for photovoltaics

    摘要: Supporting high data rate wireless connectivity among wearable devices in a dense indoor environment is challenging. This is primarily due to bandwidth scarcity when many users operate multiple devices simultaneously. The millimeter-wave (mmWave) band has the potential to address this bottleneck, thanks to more spectrum and less interference because of signal blockage at these frequencies. In this paper, we explain the potential and challenges associated with using mmWave for wearable networks. To provide a means for concrete analysis, we present a system model that admits easy analysis of dense, indoor mmWave wearable networks. We evaluate the performance of the system while considering the unique propagation features at mmWave frequencies, such as human body blockages and re?ections from walls. One conclusion is that the non-isotropy of the surroundings relative to a reference user causes variations in system performance depending on the user location, body orientation, and density of the network. The impact of using antenna arrays is quanti?ed through analytic closed-form expressions that incorporate antenna gain and directivity. It is shown that using directional antennas, positioning the transceiver devices appropriately, and orienting the human user body in certain directions depending on the user location result in gigabits-per-second achievable ergodic rates for mmWave wearable networks.

    关键词: personal communication networks,wearable computers,signal to noise ratio,Millimeter wave communication,performance analysis,analytic models,indoor communication,internet of things,virtual reality

    更新于2025-09-23 15:19:57

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Imaging Rydberg States of Atoms and Molecules with a Weak DC Field

    摘要: This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the nondeterministic polynomial (NP) complete multicast routing problem (MRP). The main contribution is the extension of particle swarm optimization (PSO) from the continuous domain to the binary or discrete domain. First, a novel bi-velocity strategy is developed to represent the possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP, where 1 stands for a node being selected to construct the multicast tree, whereas 0 stands for being otherwise. Second, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in the continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the Operation Research Library (OR-library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly since it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on genetic algorithms, ant colony optimization, and PSO.

    关键词: particle swarm optimization (PSO),Steiner tree problem (STP),Communication networks,multicast routing problem (MRP)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Workshop on Recent Advances in Photonics (WRAP) - Guwahati, India (2019.12.13-2019.12.14)] 2019 Workshop on Recent Advances in Photonics (WRAP) - Lasing based on periodically patterned anisotropic thin film metamaterial

    摘要: This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the nondeterministic polynomial (NP) complete multicast routing problem (MRP). The main contribution is the extension of particle swarm optimization (PSO) from the continuous domain to the binary or discrete domain. First, a novel bi-velocity strategy is developed to represent the possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP, where 1 stands for a node being selected to construct the multicast tree, whereas 0 stands for being otherwise. Second, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in the continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the Operation Research Library (OR-library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly since it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on genetic algorithms, ant colony optimization, and PSO.

    关键词: Steiner tree problem (STP),particle swarm optimization (PSO),Communication networks,multicast routing problem (MRP)

    更新于2025-09-16 10:30:52

  • Adaptive Equalization for Dispersion Mitigation in Multi-Channel Optical Communication Networks

    摘要: Optical communication networks (OCNs) provide promising and cost-effective support for the ultra-fast broadband solutions, thus enabling them to address the ever growing demands of telecommunication industry such as high capacity and end users’ data rate. OCNs are used in both wired and wireless access networks as they offer many advantages over conventional copper wire transmission such as low power consumption, low cost, ultra-high bandwidth, and high transmission rates. Channel effects caused by light propagation through the fiber limits the performance, hence the data rate of the overall transmission. To achieve the maximum performance gain in terms of transmission rate through the OCN, an optical downlink system is investigated in this paper using feed forward equalizer (FFE) along with decision feedback equalizer (DFE). The simulation results show that the proposed technique plays a key role in dispersion mitigation in multi-channel optical transmission to uphold multi-Gb/s transmission. Moreover, bit error rate (BER) and quality factor (Q-factor) below 10?5 and above 5, respectively, are achieved with electrical domain equalizers for the OCN in the presence of multiple distortion effects showing the effectiveness of the proposed adaptive equalization techniques.

    关键词: decision feedback equalizer,polarization mode dispersion,chromatic dispersion,feed forward equalizer,optical communication networks

    更新于2025-09-12 10:27:22

  • [IEEE 2018 20th International Conference on Transparent Optical Networks (ICTON) - Bucharest (2018.7.1-2018.7.5)] 2018 20th International Conference on Transparent Optical Networks (ICTON) - Machine Learning Based Optimal Modulation Format Prediction for Physical Layer Network Planning

    摘要: Physical layer network design and planning process is a cumbersome one. It includes laying out all possible combinations of modulation formats, fiber types, forward error correction codes, channel spacing, etc., conducting exhaustive simulations and lab experiments to come up with carefully tuned engineering rules, and finally using these approximate models to propose transmission feasibility. Besides being cumbersome, there are two fundamental issues in conventional network planning approach, firstly it almost exclusively offers conservative design, leading to resource underutilization, and secondly it’s not scalable – neither from planning viewpoint nor computationally – to next-generation highly granular and flexible networks. Machine learning, an artificial intelligence toolset, may be applied to solve aforementioned issues by allowing data-driven model development, and consequent transmission quality prediction. While network planning is an extensive topic, in this paper, we focus on neural network based modulation format classification, autonomously identifying best possible modulation format for a given link configuration.

    关键词: machine learning,analytics,communication networks,optimization,optical fiber communications

    更新于2025-09-10 09:29:36

  • [IEEE 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES) - Las Palmas de Gran Canaria, Spain (2018.6.21-2018.6.23)] 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES) - Resources for Satellite-Based Quantum Communication Networks

    摘要: Quantum mechanics-based computing offers revolutionary including in communications. Different out-of-laboratory experiments demonstrated the feasibility of the wired-based quantum free-space communication experiments have been performed. The next step will be a satellite-based quantum network, which will allow global secure communications. In our paper, we describe the requirements for such network and detail our results on a quantum novel, communication network.

    关键词: entanglement,quantum,satellite,communication,networks

    更新于2025-09-10 09:29:36