- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fibre Bragg grating sensor applications for structural health monitoring
摘要: Purpose – Structural health monitoring (SHM) has become an attractive subject in aerospace engineering ?eld considering the opportunity to avoid catastrophic failures by detecting damage in advance and to reduce maintenance costs. Fibre Bragg Grating (FBG) sensors are denoted as one of the most promising sensors for SHM applications as they are lightweight, immune to electromagnetic effects and able to be embedded between the layers of composite structures. The purpose of this paper is to research on and demonstrate the feasibility of FBG sensors for SHM of composite structures. Design/methodology/approach – Applications on thin composite beams intended for SHM studies are presented. The sensor system, which includes FBG sensors and related interrogator system, and manufacturing of the beams with embedded sensors, are detailed. Static tension and torsion tests are conducted to verify the effectiveness of the system. Strain analysis results obtained from the tests are compared with the ones obtained from the ?nite element analyses conducted using ABAQUS? software. In addition, the comparison between the data obtained from the FBG sensors and from the strain gauges is made by also considering the noise content. Finally, fatigue test under torsion load is conducted to observe the durability of FBG sensors. Findings – The results demonstrated that FBG sensors are feasible for SHM of composite structures as the strain data are accurate and less noisy compared to that obtained from the strain gauges. Furthermore, the convenience of obtaining reliable data between the layers of a composite structure using embedded FBG sensors is observed. Practical implications – Observing the advantages of the FBG sensors for strain measurement will promote using FBG sensors for damage detection related to the SHM applications. Originality/value – This paper presents applications of FBG sensors on thin composite beams, which reveal the suitability of FBG sensors for SHM of lightweight composite structures.
关键词: Torsion test,Tension test,Structural health monitoring,Composite beams,Fibre Bragg grating sensors
更新于2025-09-23 15:22:29
-
[ASME ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems - San Antonio, Texas, USA (Monday 10 September 2018)] Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation - Simulation of a Composite Piezoelectric and Glass Fiber Reinforced Polymer Beam for Adaptive Stiffness Applications
摘要: Glass Fiber Reinforced Polymer (GFRP) beams have shown over a 20% decrease in weight compared to more traditional materials without affecting system performance or fatigue life. These beams are being studied for use in automobile leaf-spring suspension systems to reduce the overall weight of the car therefore increasing fuel efficiency. These systems are subject to large amplitude mechanical vibrations at relatively constant frequencies, making them an ideal location for potential energy scavenging applications. This study analyses the effect on performance of GFRP beams by substituting various composite layers with piezoelectric fiber layers and the results on deflection and stiffness. Maximum deflection and stress in the beam is calculated for varying the piezoelectric fiber layer within the beam. Initial simulations of a simply supported multimorph beam were carried out in ABAQUS/CAE. The beam was designed with symmetric piezoelectric layers sandwiching a layer of S2-glass fiber reinforced polymer and modeled after traditional mono leaf-spring suspension designs with total dimensions 1480 x 72 x 37 mm3, with 27 mm camber. Both piezoelectric and GFRP layers had the same dimensions and initially were assumed to have non-directional bulk behavior. The loading of the beam was chosen to resemble loading of a leaf spring, corresponding to the stresses required to cycle the leaf at a stress ratio between R = 0.2 and 0.4, common values in heavy-duty suspension fatigue analysis. The maximum stresses accounted for are based on the monotonic load required to set the bottom leaf surface under tension. These results were then used in a fiber orientation optimization algorithm in Matlab. Analysis was conducted on a general stacking sequence [0°/45°]s, and stress distributions for cross ply [0°/90°]s, and angle ply [+45°/-45°]s were examined. Fiber orientation was optimized for both the glass fiber reinforced polymer layer to maximize stiffness, and the piezoelectric fiber layers to simultaneously minimize the effect on stiffness while minimizing deflection. Likewise, these fibers could be activated through the application of electric field to increase or decrease the stiffness of the beam. The optimal fiber orientation was then imported back into the ABAQUS/CAE model for a refined simulation taking into account the effects of fiber orientation on each layer.
关键词: adaptive stiffness,composite beams,Glass Fiber Reinforced Polymer,energy scavenging,piezoelectric
更新于2025-09-09 09:28:46