修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

13 条数据
?? 中文(中国)
  • Structural, morphological, optical and dielectric properties of M <sup>3+</sup> /PVA/PEG SPE Films (M = La, Y, Fe or Ir)

    摘要: Low band gap polymer complexes are promising due to its flexibility, and exhibiting electronic and optical properties of inorganic semiconductors. The effect of PEG on the physical properties of PVA was evaluated. Then, blend (PVA: PEG = 50:50) doped with rare earth (La or Y) and transition metal (Fe or Ir) chlorides to obtain solid polymer electrolyte films. XRD shows that adding PEG to PVA results in a new peak, 2θ = 23o with increased intensity as PEG ratio increases. However, doping with La3+, Fe3+ or Ir3+ eliminate this peak and decrease the crystallinity. SEM exhibits significant changes in the morphology of films. FTIR confirms miscibility between PVA & PEG and the complexation of the salts. The optical band gap (Eg) of PVA ~ 5.37 eV, decreased slightly by blending with PEG. While it decreased significantly to 2.64 eV and 2.78 eV after doping with Fe3+ or Ir3+. There are a consistency between Eg values obtained by Tauc's model and that obtained from the optical dielectric loss. The dielectric constant and loss, in temperature range 303–405 K & frequency range 1.0 kHz ‐ 5.0 MHz, indicate one or two relaxation peak(s) depending on the film composition. Accordingly, conduction mechanism varied between correlated barrier hopping and large polaron tunneling. The DC conductivity was strongly depend on the dielectric loss. The transition metal salts appear to be more effective than the rare earth ones in increasing σac of films to higher values that candidates them in semiconductors industry.

    关键词: conduction mechanism,low band gap polymers,activation energy,PVA/PEG blend,rare earth metal complexation,solid polymer electrolyte

    更新于2025-09-09 09:28:46

  • Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism

    摘要: Recently, solution-processed resistive switches for wearable electronics have got tremendous attention and are required for different applications due to their easy process and fabrication. Hence, this paper proposes the solution-processed resistive switching memory device based on two polymers, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)] (F8BT) and polyvinylpyrrolidone (PVP) composite, which is fabricated on a flexible indium–tin–oxide (ITO)-coated polyethylene terephthalate (PET) substrate through spin coating technology. The fabricated device demonstrates a perfect non-volatile bipolar resistive switching through small operating voltage sweeping of ± 1.5 V, and its high-resistance state (HRS) and low-resistance state (LRS) are 92678.89 ? and 337.85 ?, respectively. To verify the non-volatility and long-term stability, the device is checked for more than 700 endurance cycles. During these cycles, the variations of HRS and LRS are 48 ? and 37.35 ?, respectively. The retention time is checked for more than 60 days, and the ROFF/RON ratio is 274.31. The bendability is carried out up to bending diameters < 10 mm, and FESEM is used for the morphological characteristics of the device. Conduction mechanism of the proposed device is supported by space charge-limited conduction (SCLC) which is explained by the log–log I–V slope-fitting curve. The results insure that the F8BT:PVP composite-based resistive switching device is to be a potential candidate for the future flexible and low-power non-volatile resistive switching memory device.

    关键词: Resistive switching,Composite,F8BT,Solution-processed,Flexible,Non-volatile,PVP,Conduction mechanism

    更新于2025-09-04 15:30:14

  • Probing Distinctive Electron Conduction in Multilayer Rhenium Disulfide

    摘要: Charge carrier transport in multilayer van der Waals (vdW) materials, which comprise multiple conducting layers, is well described using Thomas–Fermi charge screening (λTF) and interlayer resistance (Rint). When both effects occur in carrier transport, a channel centroid migrates along the c-axis according to a vertical electrostatic force, causing redistribution of the conduction centroid in a multilayer system, unlike a conventional bulk material. Thus far, numerous unique properties of vdW materials are discovered, but direct evidence for distinctive charge transport behavior in 2D layered materials is not demonstrated. Herein, the distinctive electron conduction features are reported in a multilayer rhenium disulfide (ReS2), which provides decoupled vdW interaction between adjacent layers and much high interlayer resistivity in comparison with other transition-metal dichalcogenides materials. The existence of two plateaus in its transconductance curve clearly reveals the relocation of conduction paths with respect to the top and bottom surfaces, which is rationalized by a theoretical resistor network model by accounting of λTF and Rint coupling. The effective tunneling distance probed via low-frequency noise spectroscopy further supports the shift of electron conduction channel along the thickness of ReS2.

    关键词: Coulomb screening,charge conduction mechanism,multilayer,transport,anisotropy,rhenium disulfide

    更新于2025-09-04 15:30:14