- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Synergetic utilization of photoabsorption and surface facet in crystalline/amorphous contacted BiOCl-Bi2S3 composite for photocatalytic degradation
摘要: Photoabsorption and surface property of semiconductor are two key factors to determine its photocatalytic performance. In this work, BiOCl-Bi2S3 composites composed of Bi2S3 nanoparticles bonded on BiOCl nanoplates enclosed with {001} and {110} crystal facets were synthesized through an in-situ ion exchange method at room temperature. The transformed Bi2S3 made BiOCl-Bi2S3 composites efficient visible light absorption, ensuring the quantity of photoinduced carriers as well as intimate crystalline-amorphous contact interface to benefit the separation of photoinduced carriers. Moreover, BiOCl nanoplates enclosed with {001} and {110} crystal facets can convenient transfer carriers to {001} crystal facets. The photocatalytic performance of BiOCl-Bi2S3 composites was evaluated by the methylene blue photodegradation under visible light irradiation and the results indicate that BiOCl-Bi2S3 composites have good photocatalytic ability due to enhanced light absorption, efficient separation and transfer of carriers. Based on the active species trapping experiments, transient photocurrents, electrochemical impedance spectroscopy and energy band structure, a possible photocatalytic mechanism of methylene blue over the BiOCl-Bi2S3 composites was proposed.
关键词: Surface property,Visible light,BiOCl-Bi2S3,Contact interface,Photocatalytic mechanism,Crystal facet
更新于2025-09-23 15:22:29
-
1D/2D WO3 nanostructure coupled with nanoparticulate CuO cocatalyst for enhancing solar-driven CO2 photoreduction: The impact of the crystal facet
摘要: Photocatalytic reduction of CO2 into solar fuels is regarded as one of the most promising approaches to address the issues of global warming and the energy crisis. The promotion of spatial charge separation and transfer through crystal facet engineering could be conducive to improved photocatalytic activity. In this study, one-dimensional (1D) WO3 nanowires with a {110} dominant facet (WO3-110) and two-dimensional (2D) WO3 nanosheets with a {001} dominant facet (WO3-001) coupled with CuO nanoparticles are fabricated by a facile method and used for CO2 photoreduction. Its composition and structural characterizations suggest that the WO3-CuO hybrid features good contact between the WO3 and CuO nanostructures. Under light irradiation, the WO3 and WO3-CuO nanostructures are able to photoreduce CO2 into CH4. Notably, the prepared WO3-CuO nanohybrids with different exposed facets show improved CO2 reduction capability compared to pure WO3 and CuO. The heterojunction interface between the WO3 photocatalyst and the CuO cocatalyst through p-n contact can facilitate electron-hole pair separation and accordingly results in enhanced photocatalytic performance. With the assistance of the CuO cocatalyst, the {110} facet WO3-CuO hybrid displays superior photoreduction capability compared to the {001} facet WO3-CuO, which is attributed to the difference in the crystal facets in the heterostructure. The {110} facet WO3 nanowires have a more negative conduction band edge, contributing to the higher reduction capacity of this sample. On the other hand, it is shown that faster charge carrier transfer efficiency would enable more photoinduced electrons to participate in CO2 photoreduction, especially with the involvement of the nanoparticulate CuO cocatalyst. This work provides guidance for designing a hetero-photocatalyst-cocatalyst system through crystal facet engineering.
关键词: WO3-CuO composite,CO2 Photoreduction,1D/2D WO3 nanostructures,heterojunction,crystal facet impact
更新于2025-09-23 15:21:01
-
Ultrasound assisted deposition of highly stable self-assembled Bi2MoO6 nanoplates with selective crystal facet engineering as photoanode
摘要: The use of crystal facets of photocatalysts is well known as a promising strategy for the design of new photocatalysts with interesting physicochemical features for energy production applications. In this work, Bi2MoO6 thin films were synthesized by two methods, electrodeposition and sonoelectrodeposition. Preferential growth orientation depended on synthesis method. Results suggested that sonoelectrodeposition led to dominate the crystal facet {1 0 0} growth with self-assembled nanoplate morphologies while growth orientation in the {0 1 0} facet was dominant in electrodeposition in the absence of ultrasonic waves. As a highlight result, the {1 0 0} facet shows a smaller band gap, higher photocatalytic water splitting than the {0 1 0} facet. Efficient separation of charge pairs and long life time of photogenerated electrons was observed to be intrinsic features of the {1 0 0} facets. The higher charge transfer was confirmed by a higher photocurrent from linear sweep voltammetry and a smaller Nyquist radius arc. Ultrasound plays a key role in growth orientation and led to a production of homogeneous films with nanoplates which self-assembled together to form a flower-like structure. While in the absence of ultrasound the film has coral-like structure. Highly stable sonoelectrodeposited films exhibited incident photon-to-electron conversion efficiency (IPCE) of 22.4% at the specific wavelength of 500 nm. The sonoelectrodeposition method could act as a promising method for forming new films with specific crystal facet selection and developing as highly efficient photoanodes for PEC water splitting.
关键词: Crystal facet engineering,Coral-like,Water splitting,Bismuth molybdate,Self-assembled nanoplates,Sonoelectrodeposition
更新于2025-09-23 15:21:01
-
Facet-energy inspired metal oxide extended hexapod decorated with graphene quantum dots: Sensitive detection of bisphenol A in live cells
摘要: The development of crystal-facet metal oxide heterostructures has been of great interest owing to their rational design and multi-functioning properties at the nanoscale level. Herein, we report a facile solution-based method for the synthesis of single-crystal Cu2O nanostructures (i.e. Cu2O-CuO) as a core. The graphene quantum dots (GQDs) with varying concentrations are harvested on the surface of Cu2O extended hexapods (EHPs) in ethanol solution at room temperature via self-assembly, where copper acts as a sacrificial model and stabilizer as well. The Cu2O crystals displayed a good sensing activity toward BPA oxidation owing to high energy facets, dangling bonds and great proportion of surface copper atoms. The structural, morphological, chemical and vibrational investigations were attained in detail, presenting high crystallinity of the hybrid nanocomposite and Cu2O-CuO heterojunction positions along with the growth of GQDs on the core of Cu2O-CuO crystal. The electrochemical sensing performance of as-fabricated Cu2O-CuO@GQDs EHPs has been monitored for the determination of bisphenol A (BPA) as an early diagnostic marker and environmental contaminant. The synergy effect of boosted surface area, exposed Cu {111} crystallographic planes and mixed copper valences enhance redox reaction kinetics by increasing the electron shuttling rate at the electrode-analyte junction. Benefitted from the improved electrocatalytic activity for BPA oxidation, the electrochemical sensor displayed the lowest limit of detection (≤1 nM), good chemical stability and broad linear range (2 nM - 11 mM), and high sensitivity (636 μA mM-1 cm-2). The Cu2O-CuO@GQDs EHPs based sensing platform has been applied for BPA detection in water and human serum samples. We have also constructed up a pioneering electrochemical sensing podium for BPA detection in live cells which might be used as a marker in early disease diagnosis.
关键词: electrochemical sensor,bisphenol A,live cells,graphene quantum dots,crystal-facet metal oxide heterostructures
更新于2025-09-23 15:19:57
-
Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite
摘要: Precise control of crystal orientations and macroscopic morphology of a perovskite crystal is crucial for various optoelectronic applications relying on charge carrier transport tuning along exposed crystal facets. Here, taking methylammonium lead bromide (CH3NH3PbBr3) as an example, and employing a novel crystal facet engineering method, we successfully construct two kinds of perovskite crystals with exposed {001} and {110} facets. We find that the free carriers’ photoluminescence lifetime on the {001} facets can be 3 times longer than that on {110} facets. The related mechanisms are investigated via fluorescence lifetime imaging microscopy and in situ transmission electron microscopy. These indicate that the different trap state density of exposed facets and crystal structure changing of CH3NH3PbBr3 under light and electron beam irradiation lead to the differences in carrier transport along different facets. By distinguishing the charge carrier transport on different CH3NH3PbBr3 exposed facets, micro-photodetectors have been constructed. A device fabricated with the {001} exposed facets exhibited two orders of magnitude higher photocurrent and half as much dark current as a {110} facet-based device. Thus, the crystal facet engineering of perovskites can be widely adopted for understanding physical/chemical properties of perovskite crystals and provides great potential for novel perovskite optoelectronic device applications.
关键词: crystal facet engineering,charge carrier transport,optoelectronic applications,photodetectors,perovskite
更新于2025-09-09 09:28:46