- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Inverted pyramid Er3+ and Yb3+ Co-doped TiO2 nanorod arrays based perovskite solar cell: Infrared response and improved current density
摘要: In this study, a Yb3+, Er3+ co-doped TiO2 inverted pyramid nanorod (NR) array and a compact TiO2 ?lm are simultaneously fabricated as the mesoporous support layer and electron-blocking layer, respectively, by a one-pot hydrothermal method. The scanning electron microscopy results show that the incorporation of Er3+ and Yb3+ causes changes not only in the growth rate of the NRs, but also in the TiO2 NR morphology. The Er3+, Yb3+ co-doped TiO2 NRs exhibit an inverted pyramidal morphology, which is bene?cial for perovskite permeation and light utilization. Notably, the Er3+, Yb3+ co-doping causes changes in the band gap of TiO2 and leads to 25% increase in the current density. The electrochemical impedance spectroscopy results show that the device based on the doped TiO2 NRs has a higher recombination resistance and a lower transfer resistance than those of the undoped device, and thereby, the doped device exhibits a lower electron recombination rate. In addition, the upconversion Er and Yb co-doped device exhibits 25% higher current density and 17% higher photon-to-electron conversion e?ciency, as revealed by the J-V test results. Moreover, the optimized e?ciency of the TiO2 NR array-based perovskite solar cell is determined to be 10.02%. Furthermore, the Er and Yb co-doped device exhibits a near-infrared response, an e?ciency of 0.1% is achieved under infrared light (800–1100 nm) irradiation. This upconversion material can widen the photovoltaic responses of solar cells into the near-infrared region and improve the utilization of sunlight.
关键词: Infrared response,Yb3+,Er3+ co-doped,TiO2 nanorods,Perovskite solar cell
更新于2025-09-23 15:19:57
-
Optimization of rDNA degradation in recombinant Hepatitis B vaccine production plant wastewater using visible light excited Ag-doped TiO2 nanophotocatalyst
摘要: As widespread distribution of recombinant DNA of genetically modified microorganisms is a threat to the environment, the aim of this research is to investigate the efficiency of photocatalytic degradation of recombinant DNA under visible light. Using response surface methodology, a comprehensive evaluation of Ag doped-TiO2 photocatalytic degradation of recombinant DNA in Hepatitis B surface antigen production plant wastewater was performed. Photocatalytic synthesis parameters including dopant content, calcination temperature, and heating rate were investigated to model and optimize the recombinant DNA degradation efficiency. The Ag doped-TiO2 nanoparticles synthesis validation was accomplished by XRD, UV-Vis diffuse reflectance spectra, FESEM and energy-dispersive X-ray spectroscopy. A quadratic polynomial equation, developed by response surface methodology, with the correlation coefficient (R2) of 0.969 ensured the good fitness of the predicted data with the experimental results. The sensitivity analysis of model indicates that the square of silver content and calcination temperature have the greatest effect on the response, while the heating rate is the least important parameter. Furthermore, the optimum conditions of Ag content of 2.1%, calcination temperature of 485 ?C, and heating rate of 8 ?C/min resulted in 80.7% rDNA degradation experimentally.
关键词: photocatalytic degradation,genetically modified microorganisms,Ag-doped TiO2,Pichia Pastoris,recombinant DNA,Real-time PCR
更新于2025-09-23 15:19:57
-
Enhanced photocatalytic activity of potassium-doped titania photocatalyst films with nanosheet structure
摘要: Potassium-doped titania (K-doped TiO2) films had been prepared by molten-salt treatment in KNO3 for Ti-TiC coatings, containing different amount of TiC, in order to achieve enhanced activity of the films. When the amount of TiC is lower than 40%, the partial surface morphology of K-doped TiO2 films clearly shows a nanosheet structure, and the formed nanosheets could increase the accessible surface area. The results show that K-doped TiO2 with composite crystals has formed with different amount of TiC, and the relative Raman peak intensity of Ti-O-K bonding is highest for 40% TiC. Even avoiding high adsorption of K-doped TiO2 films, the films exhibit excellent and stable photocatalytic activity. With increasing the amount of TiC, the photocatalytic activity of K-doped TiO2 films first increases then decreases, reaching the highest for 40% TiC.
关键词: nanosheet,K-doped TiO2,photocatalytic activity,photocatalyst films,molten salt of KNO3
更新于2025-09-19 17:15:36
-
Low-temperature Synthesized Nba??doped TiO <sub/>2</sub> Electron Transport Layer enabling High-efficiency Perovskite Solar Cells by Band Alignment Tuning
摘要: An Nb-doped TiO2 (Nb-TiO2) film comprising a double structure stacked with a bottom compact layer and top mesoporous layers was synthesized by treating a Ti precursor-coated substrate using a one-step low-temperature steam-annealing (SA) method. SA-based Nb-TiO2 films possess high crystallinity and conductivity, and that allows better control over the conduction band (CB) of the TiO2 for electron transport layer (ETL) of the perovskite solar cells (PSCs) by the Nb doping level. Optimization of power conversion efficiency (PCE) for the Nb-TiO2 based ETL was combined with CB level tuning of the mixed-halide perovskite by changing the Br/I ratio. This band offset management enabled to establish the most suitable energy levels between ETL and perovskites. This method was applied to reduce the bandgap of perovskite to enhance photocurrent density while maintaining a high open-circuit voltage. As a result, the optimal combination of 5 mol% Nb-TiO2 ETL and 10 mol%-Br in the mixed-halide perovskite exhibited high photovoltaic performance for low-temperature device fabrication, achieving a high yield PCE of 21.3%.
关键词: low-temperature process,solvent-free hydrothermal synthesis,electron transport layer,steam-annealing method,Perovskite solar cell,niobium-doped TiO2
更新于2025-09-19 17:13:59
-
Upconverting TiO <sub/>2</sub> spheres with light scattering effect for enhanced quantum dot-sensitized solar cells
摘要: Semiconductor quantum dots (QDs) for solar cells could only absorb solar light in the visible region. Upconverters could convert near-infrared (NIR) photons into visible light photons that could be used to generate photocurrent by the sensitizers. Consequently, it is reasonable to utilize upconverters in the quantum dot-sensitized solar cells (QDSCs) in order to broaden the light utilization region. In this article, Yb3+/Er3+ co-doped TiO2 spheres were integrated into the photoanodes for QDSCs. The influence of photoanode configuration on the performance of the QDSCs has been scrutinized. The photoanode with the optimized composite film was employed to fabricate QDSC, yielding a conversion efficiency (η) of 3.53%. The QDSC with the composite film photoanode outperforms that with the pure TiO2 film photoanode. The amplified cell performance for the composite photoanodes could be attributed to the following two aspects: first, the upconversion process of the upconverter leads to indirect exploitation of NIR light. Second, the light scattering effect of the upconverter-doped TiO2 spheres enhances the absorption of visible light.
关键词: Quantum Dot-Sensitized Solar Cells,Yb3+/Er3+ Co-Doped TiO2,Upconversion,Light Scattering Effect
更新于2025-09-19 17:13:59
-
Prediction of Carbofuran Degradation Based on the Hydroxyl Radical’s Generation using the FeIII impregnated N doped-TiO2/H2O2/Visible LED Photo-Fenton-like Process
摘要: Hydroxyl radicals (?OH) are the dominant reactive species during most photocatalytic reactions. Therefore, ?OH generation as an index could be beneficial in comparing the obtained results in different experimental setup designs, thereby providing new insights for understanding the photocatalytic mechanism. Heterogeneous Photo-Fenton like processes are one of the most effective technologies for degradation of organic pollutants through ?OH production. Nevertheless, kinetic models that take into account the dependence of the contaminant degradation on ?OH generation under homogeneous oxidant supply, are still limited in such processes. In this paper, a photo-Fenton like reagent (FeIII impregnated N-doped TiO2 (FeNT)/H2O2) involving both heterogeneous and homogeneous phases was employed for carbofuran (CBF) degradation, frequently used pesticide in many developing countries from the carbamate group. In addition, a commercial visible LED lamp (Vis LED) with high power output was utilized as an innovative and efficient visible light source to simulate solar energy. Accordingly, a new kinetic model was proposed to predict CBF degradation in the FeNT/H2O2/Vis LED process under high Vis LED light intensities based on intrinsic reaction parameters, including the Vis LED light intensity, FeNT dosage, initial H2O2 concentration, and ?OH generation. The developed model was verified and validated successfully under various reaction conditions. However, a standard error ranging from 3 % to 15% was observed at extreme cases such as high [FeNT] and I or low [H2O2]0 when comparing model predictions and experimental results. This is due to the use of averaged conditions to forecast the rate constants.
关键词: Fe-N doped TiO2,Hydroxyl radicals,kinetic modeling,Carbofuran,Visible LED,impregnation
更新于2025-09-16 10:30:52
-
Transforming polymorphs of Co-doped TiO2 nanoparticles: an efficient photo-electrode for dye-sensitized solar cells
摘要: Simple sol–gel assisted spin coating technique was used to prepare cobalt-doped TiO2 films for the application of dye-sensitized solar cells (DSSC). TiO2 photo-electrodes with few Co concentrations (0, 0.025, 0.05, 0.075 and 0.1 M) were prepared on conducting glass substrates. The morphology, structure and composition of the Co:TiO2 films were observed using SEM, XRD and EDAX analysis. The average crystallite size of Co:TiO2 nanoparticles obtained from diffractograms are in the range of 3–12 nm. The transformation of polymorphs from anatase to rutile and vice versa for the increasing concentrations of Co in TiO2 films is observed. The values of optical bandgap energy for Co-doped films are observed to be higher than the pure TiO2 film and the highest is for the dopant level of 0.025 M. Doping of 0.1 M Co in TiO2 enhances the power conversion efficiency of DSSC by 65% compared to pure TiO2 film, demonstrating the influence of Co doping on the functioning of DSSC.
关键词: TiO2,Co-doped TiO2,Sol–gel,DSSC,Spin coating technique
更新于2025-09-12 10:27:22
-
Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation
摘要: Photocatalytic hydrogen production is a fascinating clean energy technology to solve the environmental issues and energy crisis. Herein, Ti3C2, a member of MXene, is successfully designed as a precursor for preparing C-TiO2/g-C3N4 photocatalyst without extra carbon addition, and the C-TiO2/g-C3N4 photocatalysts exhibit drastically improved photocatalytic hydrogen generation activity. When the mass ratio of Ti3C2 to g-C3N4 is 10 wt% in the composite, the prepared C-TiO2/g-C3N4 composite photocatalyst shows the highest photocatalytic H2 production activity as high as of 1409 μmol/h/g, which is about 8 times and 24 times higher than the activity of pure g-C3N4 and C-TiO2, respectively. The possible mechanism is assumed that the achieved intimate heterojunction between the Ti3C2 MXene-derived C-doped TiO2 and g-C3N4 can efficiently facilitate the photogenerated charge transfer and inhibit the recombination of electronics and holes, which markedly enhanced photocatalytic hydrogen production activity of C-TiO2/g-C3N4 photocatalysts under visible light.
关键词: MXene,Carbon-doped TiO2,Photocatalyst,Hydrogen production,g-C3N4
更新于2025-09-12 10:27:22
-
Erbium doped anatase TiO2 nanoparticles for photovoltaic applications
摘要: Doping of rare earth metal erbium (Er) into the nanocrystalline titanium dioxide (TiO2) was identified to enhance the performance of photocatalytic and photovoltaic applications. Herein, TiO2 was doped with different concentrations of erbium through hydrothermal method and then employed to photocatalytic and photovoltaic applications. XRD, FT-IR, TEM, AFM, UV–visible DRS and photocatalytic measurements were carried out to examine the impact of erbium doping on TiO2. The photovoltaic study revealed that the Er doped TiO2 exhibited the better power conversion efficiency with high short-circuit current density (Jsc) and open-circuit voltage (Voc). This enhancement may be due to the reduced charge recombination, increased dye absorption ability and fast photoelectron injection.
关键词: TEM,Photovoltaic,XRD,FT-IR,Er doped TiO2,Photocatalytic
更新于2025-09-11 14:15:04
-
Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production
摘要: In this work, we grow intrinsically Cu-doped TiO2 nanotubes (TiNTs) by self-organizing anodization of Ti–Cu binary alloys. We demonstrate that up to a copper concentration of 1.5 at.% in the alloy, self-ordered Cu2+-doped nanotubes can be grown. Under UV illumination the Cu2+ ion-doped oxide structures can be converted to nanotubes that carry metallic nanoparticles (NPs) uniformly decorated on top of the TiNTs. We investigate the formation of these metallic nanoparticles under UV illumination by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The resulting intrinsic copper-doped and decorated TiNTs have a strongly enhanced photocatalytic activity for H2 evolution in comparison to pristine TiNTs. Key is the light-induced conversion of the intrinsic Cu dopant to metallic copper nanoparticles that act as a stable co-catalyst for H2 generation.
关键词: intrinsic copper decoration.,photocatalytic activity,Cu doped TiO2,TiO2
更新于2025-09-10 09:29:36