修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

22 条数据
?? 中文(中国)
  • Design and Comparative Studies of Z-Scheme and Type II Based Heterostructures of NaNbO <sub/>3</sub> /CuInS <sub/>2</sub> /In <sub/>2</sub> S <sub/>3</sub> for Efficient Photoelectrochemical Applications

    摘要: Here, we report the fabrication of a new Z-scheme based core/shell/shell heterostructure of NaNbO3/CuInS2/In2S3 (core/shell/shell) for photoelectrochemical (PEC) water splitting and also for degradation of organic pollutants. We have also performed a comparative study with a modified heterostructure of NaNbO3/In2S3/CuInS2 having Type II band alignment. The PEC measurements under visible light irradiation show increased photocatalytic performance for the NaNbO3/CuInS2/In2S3 heterostructures as revealed by a high current density of ~6.72 mA/cm2 at ?1.0 V versus Ag/AgCl and low photocurrent onset potential of ~?110 mV in comparison to the Type II system (~1.63 mA/cm2 and ?180 mV vs Ag/AgCl). Mott?Schottky plots confirmed the n?p?n type heterojunction formation in the NaNbO3/CuInS2/In2S3 heterostructure which reduces the charge carrier recombination (revealed by PL intensity and short lifetime). The Z-scheme based system also exhibits excellent degradation efficiency (~99.6%) of organic pollutants. This work shows that the Z-scheme charge separation mechanism in NaNbO3/CuInS2/In2S3 nanostructures is more efficient than the Type II based on NaNbO3/In2S3/CuInS2.

    关键词: core/shell/shell heterostructure,photoelectrochemical water splitting,Type II band alignment,organic pollutants degradation,Z-scheme,NaNbO3/CuInS2/In2S3

    更新于2025-09-09 09:28:46

  • Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS <sub/>2</sub> Using Nanoparticle Cation Exchange Reactions

    摘要: For polymorphic solid-state systems containing multiple distinct crystal structures of the same composition, identifying rational pathways to selectively target one particular structure is an important synthetic capability. Cation exchange reactions can transform a growing library of metal chalcogenide nanocrystals into different phases by replacing the cation sublattice, often while retaining morphology and crystal structure. However, only a few examples have been demonstrated where multiple distinct phases in a polymorphic system could be selectively accessed using nanocrystal cation exchange reactions. Here, we show that roxbyite (hexagonal) and digenite (cubic) Cu2?xS nanoparticles transform upon cation exchange with Cd2+, Zn2+, and In3+ to wurtzite (hexagonal) and zincblende (cubic) CdS, ZnS, and CuInS2, respectively. These products retain the anion and cation sublattice features programmed into the copper sulfide template, and each phase forms to the exclusion of other known crystal structures. These results significantly expand the scope of structure-selective cation exchange reactions in polymorphic systems.

    关键词: zincblende,cation exchange reactions,wurtzite,ZnS,metal chalcogenide nanocrystals,CdS,polymorphic solid-state systems,CuInS2

    更新于2025-09-04 15:30:14