修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Impact of Thin CuGa Layers Added at the Rear Interface of Cu <sub/>2</sub> ZnSnSe <sub/>4</sub> Solar Cells

    摘要: Current neural networks are accumulating accolades for their performance on a variety of real-world computational tasks including recognition, classification, regression, and prediction, yet there are few scalable architectures that have emerged to address the challenges posed by their computation. This paper introduces Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance. As an field-programmable gate array-based system, it can be integrated into existing robotics or it can offload computationally expensive neural network tasks from the CPU. The version presented here implements a spiking deep network which achieves 19 million postsynaptic currents per second on 1.5 W of power and supports up to 65 K neurons per board. The system records 92% accuracy on the MNIST handwritten digit classification and 71% accuracy on the 20 newsgroups classification data set. Due to its event-driven nature, it allows for trading off between accuracy and latency.

    关键词: Deep belief networks,spiking neural networks,field programmable arrays,restricted Boltzmann machines,neural networks,machine learning

    更新于2025-09-23 15:19:57

  • Photo-responsible Synapse using Ge Synaptic Transistors and GaAs Photodetectors

    摘要: Current neural networks are accumulating accolades for their performance on a variety of real-world computational tasks including recognition, classification, regression, and prediction, yet there are few scalable architectures that have emerged to address the challenges posed by their computation. This paper introduces Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance. As an field-programmable gate array-based system, it can be integrated into existing robotics or it can offload computationally expensive neural network tasks from the CPU. The version presented here implements a spiking deep network which achieves 19 million postsynaptic currents per second on 1.5 W of power and supports up to 65 K neurons per board. The system records 92% accuracy on the MNIST handwritten digit classification and 71% accuracy on the 20 newsgroups classification data set. Due to its event-driven nature, it allows for trading off between accuracy and latency.

    关键词: Deep belief networks,spiking neural networks,field programmable arrays,restricted Boltzmann machines,neural networks,machine learning

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE R10 Humanitarian Technology Conference (R10-HTC) - Depok, West Java, Indonesia (2019.11.12-2019.11.14)] 2019 IEEE R10 Humanitarian Technology Conference (R10-HTC)(47129) - Eye Gaze Controlled Immersive Video Navigation System for Disabled People

    摘要: Current neural networks are accumulating accolades for their performance on a variety of real-world computational tasks including recognition, classification, regression, and prediction, yet there are few scalable architectures that have emerged to address the challenges posed by their computation. This paper introduces Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance. As an field-programmable gate array-based system, it can be integrated into existing robotics or it can offload computationally expensive neural network tasks from the CPU. The version presented here implements a spiking deep network which achieves 19 million postsynaptic currents per second on 1.5 W of power and supports up to 65 K neurons per board. The system records 92% accuracy on the MNIST handwritten digit classification and 71% accuracy on the 20 newsgroups classification data set. Due to its event-driven nature, it allows for trading off between accuracy and latency.

    关键词: Deep belief networks,neural networks,restricted Boltzmann machines,spiking neural networks,field programmable arrays,machine learning

    更新于2025-09-19 17:13:59