- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Facile synthesis of La-doped CdS nanoparticles by microwave assisted co-precipitation technique for optoelectronic application
摘要: Low-cost microwave assisted technique has been applied to produce La-doped CdS nanoparticles and their structural, morphological, optical, Raman, dielectric and electrical studies were carried out. Broad XRD peaks revealed the growth of low-dimension La-doped CdS nanoparticles with wurtzite structure. Spherical shape morphology of synthesized nanostructures was confirmed by SEM analysis. SEM mapping and EDAX analysis showed the elemental composition and successful incorporation of La in CdS matrix. Diffused reflectance spectroscopy was used to determine the energy gaps and it was observed to be reduced from 2.47 to 2.3 eV upon La doping. Vibrational studies on La:CdS nanoparticles displayed longitudinal optical modes. PL studies exhibited improved luminescence for the band to band transition of the CdS nanoparticles. The ε’ values are enhanced in general; though it displayed reduced ε’ values at some concentration owing to reduction of polarization. Enhancement in AC conductivity was observed with increasing La concentration and the studies on the involved conduction mechanism revealed that the hopping motion in prepared nanostructures is translation motion with a quick hopping and the behavior is that of ionic conduction.
关键词: FT-Raman spectroscopy,optical properties,dielectric and electrical properties,X-ray diffraction,SEM/EDX,La:CdS
更新于2025-09-23 15:21:01
-
Interfacial structure of SrZr <sub/><i>x</i> </sub> Ti <sub/>1?</sub><sub/><i>x</i> </sub> O <sub/>3</sub> films on Ge
摘要: The interfacial structure of SrZrxTi1?xO3 films grown on semiconducting Ge substrates is investigated by synchrotron X-ray diffraction and first-principles density functional theory. By systematically tuning the Zr content x, the effects of bonding at the interface and epitaxial strain on the physical structure of the film can be distinguished. The interfacial perovskite layers are found to be polarized as a result of cation-anion ionic displacements perpendicular to the perovskite/semiconductor interface. We find a correlation between the observed buckling and valence band offsets at the SrZrxTi1?xO3/Ge interface. The trends in the theoretical valence band offsets as a function of Zr content for the polar structures are in agreement with reported X-ray photoelectron spectroscopy measurements. These results have important implications for the integration of functional oxide materials with established semiconductor based technologies.
关键词: synchrotron X-ray diffraction,density functional theory,valence band offsets,SrZrxTi1?xO3 films,Ge substrates,interfacial structure
更新于2025-09-23 15:21:01
-
Coexistence of pressure-induced structural phases in bulk black phosphorus: a combined x-ray diffraction and Raman study up to 18 GPa
摘要: We report a study of the structural phase transitions induced by pressure in bulk black phosphorus by using both synchrotron x-ray diffraction for pressures up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa. Very recently black phosphorus attracted large attention because of the unique properties of few-layers samples (phosphorene), but some basic questions are still open in the case of the bulk system. As concerning the presence of a Raman spectrum above 10 GPa, which should not be observed in an elemental simple cubic system, we propose a new explanation by attributing a key role to the non-hydrostatic conditions occurring in Raman experiments. Finally, a combined analysis of Raman and XRD data allowed us to obtain quantitative information on presence and extent of coexistences between different structural phases from ~5 up to ~15 GPa. This information can have an important role in theoretical studies on pressure-induced structural and electronic phase transitions in black phosphorus.
关键词: high pressure,black phosphorus,x-ray diffraction,Raman spectroscopy,phase transitions
更新于2025-09-23 15:21:01
-
The effect of Zn3N2 phase decomposition on the properties of highly-doped ZnO: Al, N films
摘要: Study of Al-N simultaneous doping and thermal annealing influence on the properties of ZnO films is very important for achievement as p-type conductivity in the films as for improvement the performance of ZnO-based ultraviolet detectors. Highly-doped ZnO:Al,N films containing the Zn3N2 phase (ZnO:Al,N-Zn3N2) were grown on Si substrates by magnetron sputtering using a layer-by-layer growth technique. Our work presents a comparative study of the structure, optical and electronic properties of highly-doped as-grown and annealed ZnO:Al,N films. It was shown that the thermal annealing of ZnO:Al,N-Zn3N2 film at atmospheric conditions allows to decompose the Zn3N2 phase. The features of this phenomena on the properties of ZnO:Al,N films were investigated and discussed in detail by using X-ray diffraction, energy dispersive X-ray analysis, Raman scattering, photoluminescence, X-ray photoelectron spectroscopy and X-ray emission spectroscopy.
关键词: Radio-frequency magnetron sputtering,Zinc oxide,Nitrogen-aluminum doping,Photoluminescence,X-ray photoelectron spectroscopy,Thin films,X-ray diffraction,Raman scattering
更新于2025-09-23 15:21:01
-
Persistence of the R3m Phase in Powder GeTe at High Pressure and High Temperature
摘要: As a phase-change material, rhombohedral GeTe (space group R3m) was believed to transform to the cubic rock-salt phase (B1) at 3–4 GPa, associated with the disappearance of a Peierls distortion. However, using a combination of synchrotron X-ray diffraction and theoretical calculations, we found that the R3m phase persists from ambient pressure up to pressures of about 15.8 GPa, in contrast to previous reports. Neither was the B1 phase observed in a heating X-ray powder diffraction experiment. The spurious transformation from R3m to B1 is caused by changes to the compression ratio of lattice parameters in the R3m phase under high pressure/temperature. These findings provide insight into transitions of phase-change materials, relevant to other materials undergoing displacive transitions under high pressure/temperature.
关键词: structural phase transitions,density-functional theory,high pressure,phase-change materials,high temperature,GeTe,synchrotron X-ray diffraction
更新于2025-09-23 15:21:01
-
Dependence of h-BN film thickness as grown on nickel single crystal substrates of different orientation
摘要: Chemical vapor deposition of 2D materials has been an active area of research in recent years because it is a scalable process for obtaining thin films that can be used to fabricate devices. The growth mechanism for hexagonal boron nitride (h-BN) on metal catalyst substrates has been described to be either surface energy driven or diffusion driven. In this work, h-BN is grown in a CVD system on Ni single crystal substrates as a function of Ni crystallographic orientation to clarify the competing forces acting on the growth mechanism. We observed that the thickness of the h-BN film depends on the Ni substrate orientation, with the growth rate increasing from the (100) surface to the (111) surface, and the highest on the (110) surface. We associate the observed results with surface reactivity and diffusivity differences for different Ni orientations. Boron and nitrogen diffuse and precipitate from the Ni bulk to form thin multilayer h-BN. Our results serve to clarify the h-BN CVD growth mechanism which has been previously ascribed to a surface energy-driven growth mechanism.
关键词: surface diffusion,electron backscatter diffraction,growth mechanism,hexagonal boron nitride
更新于2025-09-23 15:21:01
-
[ASME ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems - San Antonio, Texas, USA (Monday 10 September 2018)] Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies - Manufacture of Lenses and Diffraction Gratings Using DLP As an Additive Manufacturing Technology
摘要: This document condenses the results obtained when 3D printing lenses and their potential use as diffraction gratings using Digital Light Processing (DLP), as an additive manufacturing technique. This project investigated the feasibility of using DLP additive manufacturing for producing custom designed lenses and gratings. DLP was identified as the preferred manufacturing technology for gratings fabrication. Diffraction gratings take advantage of the anisotropy, in additive manufacturing processes, to produce a collated pattern of multiple fringes on a substrate with completely smooth surfaces. The gratings are transmissive and were manufactured with slit separations of 10, 25 and 50 μm. More than 50 samples were printed at various build angles and mechanically treated for maximum optical transparency. The variables of the irradiance equation were obtained from photographs taken with an optical microscope. These values were used to estimate theoretical irradiance patterns of a diffraction grating and compared against the experimental 3-D printed grating. The resulting patterns were found to be remarkably similar in amplitude and distance between peaks when compared to theoretical values.
关键词: 3D printing,lenses,Digital Light Processing (DLP),additive manufacturing,diffraction gratings
更新于2025-09-23 15:21:01
-
Temperature Dependence of the Lattice Parameters of Cu2?–?xSe (0.03 ≤ x ≤ 0.23) Powders Fabricated by Mechanochemical Synthesis
摘要: The Cu2 – xSe (0.03 ≤ x ≤ 0.23) powders fabricated by mechanochemical synthesis have been studied by X-ray diffraction. The in situ study has been carried out for the temperature dependences of the lattice parameters, the structures, and the phase compositions of the powders in the temperature range 25–350°C. The powder compositions are shown to differ from the charge compositions and are shifted to lower copper concentrations. The estimation of peak half-widths of the cubic β phase indicates an increase in the structure imperfection after the phase transition from the α phase to the β phase of Cu2 – xSe at ~140°C. It is shown that the superpositions of the subtraction solutions (copper vacancies) and interstitials solutions (copper atoms in interstitial sites), whose proportion is changed as a function of temperature and the deviation from stoichiometry, are in the thermodynamic equilibrium in the copper selenide solid solution at room temperature. The change in the slope of the dependence of the lattice parameter of the powder Cu2 – xSe samples on the composition (0.03 ≤ x ≤ 0.23) in the temperature range 25–350°C enables the suggestion that interstitial copper atom concentration increases with temperature and deviation from stoichiometry.
关键词: phase transition,lattice parameters,mechanochemical synthesis,Cu2 – xSe,X-ray diffraction,thermodynamic equilibrium
更新于2025-09-23 15:21:01
-
Misfit-Dislocation Distributions in Heteroepitaxy: From Mesoscale Measurements to Individual Defects and Back
摘要: We provide an in-depth characterization of the dislocation distribution in partially relaxed Si0.92Ge0.08/Si(001) films. This is achieved by an innovative and general method, combining two state-of-the-art characterization techniques through suitable modeling. After having inferred the dislocation positions from transmission-electron-microscopy images, we theoretically reproduce scanning-x-ray-diffraction-microscopy tilt maps measured on the very same region of the sample. We obtain a nearly perfect match between model predictions and experimental data. As a result, we claim that it is possible to establish a local, direct correlation between the dislocations revealed by the transmission-electron-microscopy analysis and the measured lattice tilt distribution.
关键词: heteroepitaxy,dislocation distribution,scanning x-ray diffraction microscopy,transmission electron microscopy,lattice tilt distribution
更新于2025-09-23 15:21:01
-
Thermal stability study of transition metal perovskite sulfides
摘要: Transition metal perovskite chalcogenides, a class of materials with rich tunability in functionalities, are gaining increased attention as candidate materials for renewable energy applications. Perovskite oxides are considered excellent n-type thermoelectric materials. Compared to oxide counterparts, we expect the chalcogenides to possess more favorable thermoelectric properties such as lower lattice thermal conductivity and smaller band gap, making them promising material candidates for high temperature thermoelectrics. Thus, it is necessary to study the thermal properties of these materials in detail, especially thermal stability, to evaluate their potential. In this work, we report the synthesis and thermal stability study of five compounds, a-SrZrS3, b-SrZrS3, BaZrS3, Ba2ZrS4, and Ba3Zr2S7. These materials cover several structural types including distorted perovskite, needle-like, and Ruddlesden–Popper phases. Differential scanning calorimeter and thermogravimetric analysis measurements were performed up to 1200 °C in air. Structural and chemical characterizations such as X-ray diffraction, Raman spectroscopy, and energy dispersive analytical X-ray spectroscopy were performed on all the samples before and after the heat treatment to understand the oxidation process. Our studies show that perovskite chalcogenides possess excellent thermal stability in air at least up to 550 °C.
关键词: differential scanning calorimeter,thermoelectric materials,Transition metal perovskite chalcogenides,thermal stability,thermogravimetric analysis,Raman spectroscopy,Ruddlesden–Popper phases,X-ray diffraction,energy dispersive analytical X-ray spectroscopy
更新于2025-09-23 15:21:01