- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Defect Study of Group V Doped CdTe By Thermoelectric Effect Spectroscopy
摘要: Analyses have shown that electric vehicle (EV) loads may considerably affect the secondary service voltage quality. One of the ways to mitigate voltage drop concerns is to use a time-of-use (TOU) pricing scheme. A TOU pricing scheme utilizes the off-peak generation for EV charging, thus deferring any immediate grid upgrade and improving the grid sustainability. This paper evaluates various aspects of EV charging under a TOU schedule, with off-peak rates starting at hours ranging from 8 P.M. to 3 A.M. The study is conducted using an actual residential distribution circuit. A best practical time to begin the off-peak rates is determined so that the effects of EV charging on the secondary service voltages are minimized while ensuring that EVs are fully charged by 7 A.M., thus maximizing both grid and customer benefits. The analysis suggests that the best time to begin off-peak rates is between 11 P.M. and 12 A.M. Furthermore, the analysis also suggests that setting up TOU off-peak rates at the latter half of the peak load demand, for example, at 8 P.M., is detrimental to the distribution circuit voltage quality. The result indicates that the existing utility TOU scheme may exacerbate voltage drop problems due to EV load charging.
关键词: electricity market,time-of-use (TOU) pricing,Distribution system,electric vehicle (EV)
更新于2025-09-23 15:19:57
-
[IEEE 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) - Kyoto, Japan (2019.7.2-2019.7.5)] 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) - Perovskite Material and Solar Cell Research by Surface Science and Advanced Characterization
摘要: Electric vehicles (EVs) with four individually controlled drivetrains are over-actuated systems, and therefore, the total wheel torque and yaw moment demands can be realized through an infinite number of feasible wheel torque combinations. Hence, an energy-efficient torque distribution among the four drivetrains is crucial for reducing the drivetrain power losses and extending driving range. In this paper, the optimal torque distribution is formulated as the solution of a parametric optimization problem, depending on the vehicle speed. An analytical solution is provided for the case of equal drivetrains, under the experimentally confirmed hypothesis that the drivetrain power losses are strictly monotonically increasing with the torque demand. The easily implementable and computationally fast wheel torque distribution algorithm is validated by simulations and experiments on an EV demonstrator, along driving cycles and cornering maneuvers. The results show considerable energy savings compared to alternative torque distribution strategies.
关键词: experiments,power loss,electric vehicle (EV),Control allocation (CA),torque distribution
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) - Tel-Aviv, Israel (2019.11.4-2019.11.6)] 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) - Waveguide Excitation Using On-Chip Antenna for Wireline Data Links
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: agent-based model,vehicle choice survey,market penetration,vehicle choice simulation,Plug-in hybrid electric vehicles (PHEVs),electric vehicle adoption
更新于2025-09-19 17:13:59
-
A Continuously Tunable Bandpass Filter Using Distilled Water Based on Multiple-Mode Resonator
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: vehicle choice survey,electric vehicle adoption,vehicle choice simulation,agent-based model,market penetration,Plug-in hybrid electric vehicles (PHEVs)
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - The Critical Role of Window Design in Rear-Emitter Solar Cells
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: vehicle choice survey,market penetration,Plug-in hybrid electric vehicles (PHEVs),vehicle choice simulation,electric vehicle adoption,agent-based model
更新于2025-09-19 17:13:59
-
[IEEE 2019 XV Workshop de Vis?£o Computacional (WVC) - S?£o Bernardo do Campo, Brazil (2019.9.9-2019.9.11)] 2019 XV Workshop de Vis?£o Computacional (WVC) - Retinal Image Multimodal and Multitemporal Registration for a Multispot Laser Photocoagulation Device
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: vehicle choice survey,market penetration,Plug-in hybrid electric vehicles (PHEVs),vehicle choice simulation,electric vehicle adoption,agent-based model
更新于2025-09-19 17:13:59
-
[IEEE 2019 Electrical Design of Advanced Packaging and Systems (EDAPS) - KAOHSIUNG, Taiwan (2019.12.16-2019.12.18)] 2019 Electrical Design of Advanced Packaging and Systems (EDAPS) - A mm-Wave Low-Loss Transition from Microstrip Line to Air-Filled Substrate Integrated Wavguide on Printed Circuit Board Technology
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: vehicle choice survey,market penetration,Plug-in hybrid electric vehicles (PHEVs),vehicle choice simulation,electric vehicle adoption,agent-based model
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Electroluminescence Study of over 700 Fielded PV Modules in All India Survey 2018
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: vehicle choice survey,electric vehicle adoption,vehicle choice simulation,agent-based model,market penetration,Plug-in hybrid electric vehicles (PHEVs)
更新于2025-09-19 17:13:59
-
[IEEE 2019 Photonics North (PN) - Quebec City, QC, Canada (2019.5.21-2019.5.23)] 2019 Photonics North (PN) - Digital Holographic Microscope Using Femtosecond Laser Source for Live Cell Imaging
摘要: Plug-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce greenhouse gas emissions, if vehicle consumers are willing to adopt this new technology. Consequently, there is much interest in exploring PHEV market penetration models. In prior work, we developed an agent-based model (ABM) of potential PHEV consumer adoption that incorporated several spatial, social, and media influences to identify nonlinear interactions among potential leverage points that may impact PHEV market penetration. In developing that model, the need for additional data to properly inform both the decision-making rules and agent initialization became apparent. To address these issues, we recently conducted and analyzed an extensive consumer survey; in this paper, we modify the ABM to reflect the survey findings. A unique aspect is a one-to-one correspondence between agents in the model and survey respondents, and thus yielding distributions and cross correlations in agent attributes that accurately reflect the survey population. We also implement a used-PHEV market, and allow agents to purchase new or used compact PHEVs or vehicles of their current type. Based on our prior survey response analysis, our modified model includes a PHEV-technology threshold component, a multinomial logistic prediction of willingness to consider a compact PHEV based on dynamically changing attitudes, and agent-specific delay discounting functions that predict the amount agents are willing to pay up front for greater fuel savings. We thus independently account for agents’ discomfort with the new PHEV technology, their desire to drive a more environmentally friendly vehicle, and their willingness to pay a higher sticker price for a PHEV. Results of ten survey-based ABM scenarios are reported with implications for policy-makers and manufacturers. We believe close integration of the design of consumer surveys and the development of ABMs is a key step in developing useful decision-support models; this paper serves as an example of one way to achieve that.
关键词: agent-based model,vehicle choice survey,market penetration,vehicle choice simulation,Plug-in hybrid electric vehicles (PHEVs),electric vehicle adoption
更新于2025-09-19 17:13:59
-
Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles
摘要: Photovoltaic (PV) units and electric vehicles (EVs) are two household goods that are the focus of much research, and many policy initiatives attempting to promote a more sustainable, low-carbon energy system. Despite both academic and practical interest in household adoption of PV units and EVs, potential linkages in these household decisions have only just begun to be explored. This paper presents q-complementarity between the goods as one possible form of a linkage between PV and EV purchases that is based on economic utility theory. We posit the goods could be q-complements due to a PV-owning household’s ability to offset and shift their electricity load from EV charging to increase the self-consumption of ‘home-made’ electricity, thereby increasing the positive feelings of environmental e?cacy and monetary returns from the PV unit. We use data from 2541 internet surveys of Austrian residential electricity customers collected in 2018 to explore these hypotheses. Probit models of household EV and PV adoption choice are estimated, including a recursive bivariate probit model of households who plan to purchase an EV in the future, with PV ownership endogenously determined. Controlling for household income, characteristics, environmental attitudes, and neighborhood characteristics, we ?nd that EV and PV adoption are positively correlated, and that current PV unit owners are 21% more likely to plan an EV purchase in the next 5 years compared to non-PV owners. We interpret these results as evidence in support of our hypothesis of q-complementarity between PV units and EVs, and note the potential for added bene?ts from incentive policies promoting adoption of one good or the other that this linkage suggests.
关键词: PV adoption,Electric vehicle adoption,q-complements,Recursive bivariate probit model,Household choice,Solar adoption,Photovoltaic
更新于2025-09-19 17:13:59