- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Blue Electrogenerated Chemiluminescence from Halide Perovskite Nanocrystals
摘要: Electrogenerated chemiluminescence (ECL) has been extensively used in ultrasensitive electroanalysis because it can be generated electrochemically without using expensive optics and light sources. Visible ECL emission can be obtained with a reasonable quantum yield and stability. Blue ECL is rare and often suffers from stability and poor quantum efficiency. Blue ECL emission at 473 nm from organometallic halide perovskite nanocrystals (PNCs), CH3NH3PbCl1.08Br1.92, is reported here for the first time using tripropylamine (TPrA) as co-reactant. The blue ECL emission peak resembles its photoluminescence peak position. In addition to this blue emission peak, the ECL spectra of CH3NH3PbCl1.08Br1.92 PNCs also showed a broad ECL peak at 745 nm. Generation of the second ECL peak at 745 nm from CH3NH3PbCl1.08Br1.92 PNCs was can be explained by the existence of surface trap states on as-synthesized PNC due to incomplete surface passivation. Halide anion tunability of ECL emission from CH3NH3PbX3 (X: Cl, Br, I) PNCs is also demonstrated. The fluorescence microscopy image of single PNC and stability of selected single PNCs are presented in this with simultaneous acquisition of fluorescence spectra using 405-nm laser excitation. The photoluminescence (PL) decay was described by PL lifetime (τ) of 1.2 ns. The effect of the addition of surfactants (oleic acid and n-octylamine) on the fluorescence intensity and stability of CH3NH3PbCl1.08Br1.92 PNCs is also discussed.
关键词: Surfactants,Blue light emission,ECL (electrogenerated chemiluminescence),Photoluminescence (PL),Perovskite nanocrystals (PNCs),Photoluminescence quantum yield (PLQY)
更新于2025-09-23 15:23:52
-
Ratiometric Electrogenerated Chemiluminescence Cytosensor Based on Conducting Polymer Hydrogel Loaded with Internal Standard Molecules
摘要: A sensitive and reliable bimodal electrochemiluminescent (ECL) system based on CdTe Quantum Dots (QDs) and luminol as double luminophores is constructed. CdTe QDs tagged with the aptamer (CdTe-Apt 2) of cancer cells are used as the detection signal, while luminol molecules are used as internal standards. The electrodeposited polyaniline based conducting polymer hydrogel (CPH) on the electrode surfaces improves the biocompatibility and conductivity of the sensing interfaces effectively. Furtherly, electron transfer is probably much easier when luminol and coreactant potassium persulfate (K2S2O8) immobilized in the CPH compared to that in solution. Cancer cells are captured to the electrode surface by another aptamer linked to the Au nanoparticles immobilized in the CPH through Au-S bonds. In the developed bimodal ECL system, internal standard method is used to quantify cancer cells by comparing the differences in sensitivity of the double-peak ECL signals with that of target analytes. The internal standard method of ECL strategy can provide very accurate detection results in complex environment because interferences in the system can be eliminated through the self-calibration of two emission spectra. A linear relation is found based on the ?ECLCdTe/?ECLluminol against the concentration of cancer cells within 100 to 6500 cells mL-1 under optimized conditions. The developed ratiometric ECL cytosensor with internal standard can significantly improve the accuracy and reliability of cell assay in complex biological media, demonstrating promising applications in healthcare monitoring and clinical diagnostics.
关键词: Cytosensor,Electrogenerated Chemiluminescence,Internal standard method,Conducting Polymer Hydrogel,Cancer cells
更新于2025-09-23 15:21:21
-
Electrogenerated Chemiluminescence and Spectroelectrochemistry Characteristics of Blue Photoluminescence Perovskite Quantum Dots
摘要: Lead-based perovskite MAPbX3 (MA= CH3NH3, X=Cl and Br) has shown great potential benefits to advance modern optoelectronics and clean energy harvesting devices. Poor structural stability is one of the major challenges of MAPbX3 perovskite materials to overcome to achieve desired device performance. Here we present the electrochemical stability study of CH3NH3PbCl1.08Br1.92 quantum dots (QDs) by electrogenerated chemiluminescence (ECL) and photoluminescence (PL) spectroelectrochemistry methods. Electrochemical anodization of pristine MAPbX3 QD film results in the disproportionate loss of methylammonium and halide ions (X=Cl and Br). ECL efficiency and stability of perovskite QDs in the presence of co-reactant tripropyl amine (TPrA) can be greatly improved after being incorporated into a polystyrene (PS) matrix. Mass spectrum and X-ray photoelectron spectroscopy (XPS) measurements are used to provide chemical composition variation details of QDs, responsible for the ECL and PL characteristics (e.g., wavelength redshift) of perovskite QDs in an electrochemical cell.
关键词: quantum dots (QDs),Perovskite,Blue light emission,nanocrystals,polystyrene (PS),electrogenerated chemiluminescence (ECL),photoluminescence (PL)
更新于2025-09-23 15:21:01
-
Homogeneous Electron Transfer Reactions of Electrochemically Generated Species in Electrogenerated Chemiluminescence; 電気化学発光における電極反応の後続反応;
摘要: Electrogenerated Chemiluminescence (ECL) involves electrode reactions and the following homogeneous electron transfer reactions which resulted in a light emission. In this integrated research paper, we focused on the homogeneous electron transfer reactions to form excited states of some luminescent molecules. The Marcus theory was used to estimate ratios of the electron-transfer rate constants between a radical cation and anion to generate the lowest excited singlet and triplet states. In addition, the ECL behavior using tripropylamine as a coreactant was demonstrated by simulating the electrochemical and homogeneous electron transfer reactions with a finite element method. Although coreactants are useful to form excited species, because of complicated reactions in bulk, analyzing the ECL response such as relationship between the current-voltage and ECL intensity curves depending on the redox potentials of luminescent molecules and coreactants is quite difficult. It was shown that the simulations were very useful to understand the ECL response depending on the redox potentials of the coreactant and luminescent molecules.
关键词: Marcus theory,homogeneous electron transfer,Electrogenerated Chemiluminescence,tripropylamine,finite element method
更新于2025-09-09 09:28:46
-
Electrogenerated Chemiluminescent Chemodosimeter Based on a Cyclometalated Iridium(III) Complex for Rapid and Sensitive Detection of Thiophenol
摘要: Thiophenol is the simplest aromatic thiol that is utilized for various applications in industry and agriculture. However, it should be used with care because thiophenol is readily absorbed into the human body by inhalation and ingestion, which leads to serious internal injuries. Thus, there is an urgent need for real-time and accurate monitoring of thiophenol. Despite remarkable advantages of electrogenerated chemiluminescence (ECL) analysis, ECL thiophenol probes have never been reported. Herein, a new strategy for the rapid detection of thiophenol using an ECL turn-on chemodosimeter based on a cyclometalated Ir(III) complex is described. This analytical system showed superior sensitivity (limit of detection (LOD) value, 3.8 nM) in comparison to the conventional fluorescence method. In addition, our system exhibited remarkable selectivity and reaction rate towards thiophenol over other analytes. Moreover, it was successfully applied to quantify thiophenol in real water samples, providing a new proof-of-concept for field-monitoring based on ECL.
关键词: Cyclometalated Ir(III) complex,Electrogenerated chemiluminescence,Chemodosimeter,Sensitive detection,Thiophenol
更新于2025-09-04 15:30:14