修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs

    摘要: We report ultrafast optical measurements of the Dirac line-node semimetal ZrSiS and the Weyl semimetal NbAs, using mid-infrared pump photons from 86 meV to 500 meV to directly excite Dirac and Weyl fermions within the linearly dispersing bands. In NbAs, the photoexcited Weyl fermions initially form a non-thermal distribution, signi?ed by a brief spike in the differential re?ectivity whose sign is controlled by the relative energy of the pump and probe photons. In ZrSiS, electron-electron scattering rapidly thermalizes the electrons, and the spike is not observed. Subsequently, hot carriers in both materials cool within a few picoseconds. This cooling, as seen in the two materials’ differential re?ectivity, differs in sign, shape, and timescale. Nonetheless, we ?nd that it may be described in a simple model of thermal electrons, without free parameters. The electronic cooling in ZrSiS is particularly fast, which may make the material useful for optoelectronic applications.

    关键词: ultrafast optical measurements,electronic cooling,photoexcitation,Dirac line-node semimetal,thermalization,Weyl semimetal

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) - Las Vegas, NV, USA (2019.5.28-2019.5.31)] 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) - Additive Laser Metal Deposition Onto Silicon for Enhanced Microelectronics Cooling

    摘要: We previously demonstrated how the Sn3Ag4Ti alloy can robustly bond onto silicon via selective laser melting (SLM). By employing this technology, thermal management devices (e.g., micro-channels, vapor chamber evaporators, heat pipes) can be directly printed onto the electronic package (silicon die) without using thermal interface materials. Under immersion two-phase cooling (pool boiling), we compare the performance of three chip cooling methods (conventional heat sink, bare silicon die and additively manufactured metal micro-fins) under high heat flux conditions (100 W/cm2). Heat transfer simulations show a significant reduction in the chip temperature for the silicon micro-fins. Reduction of the chip operating temperature or increase in clock speed are some of the advantages of this technology, which results from the elimination of thermal interface materials in the electronic package. Performance and reliability aspects of this technology are discussed through experiments and computational models.

    关键词: Performance and Reliability,Thermal Management,Laser Metal Deposition,Additive Manufacturing,Electronic Cooling

    更新于2025-09-16 10:30:52

  • [ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - Heat Transfer Characteristics and Flow Pattern Visualization for Flow Boiling in a Vertical Narrow Microchannel

    摘要: For improving the functionality and signal speed of electronic devices, components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 ℃. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.

    关键词: microchannel heat sinks,heat transfer,subcooled flow boiling,electronic cooling,flow pattern visualization

    更新于2025-09-09 09:28:46