- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H
摘要: Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens.
关键词: Fluorescence Lifetime Imaging Microscopy (FLIM),single-cell analysis,NADPH/NADH ratio,NAD(P)H,redox,FAD,fluorescence lifetime redox ratio (FLIRR),NAD(P)H-a2%
更新于2025-11-21 11:24:58
-
In vivo multiphoton microscopy detects longitudinal metabolic changes associated with delayed skin wound healing
摘要: Chronic wounds are difficult to diagnose and characterize due to a lack of quantitative biomarkers. Label-free multiphoton microscopy has emerged as a useful imaging modality capable of quantifying changes in cellular metabolism using an optical redox ratio of FAD/(NADH+FAD) autofluorescence. However, the utility of an optical redox ratio for long-term in vivo monitoring of tissue metabolism has not been robustly evaluated. In this study, we demonstrate how multiphoton microscopy can be used to monitor changes in the metabolism of individual full-thickness skin wounds in vivo. 3D optical redox ratio maps and NADH fluorescence lifetime images identify differences between diabetic and control mice during the re-epithelialization of wounds. These metabolic changes are associated with a transient increase in keratinocyte proliferation at the wound edge. Our study demonstrates that high-resolution, non-invasive autofluorescence imaging can be performed in vivo and that optical redox ratios can serve as quantitative optical biomarkers of impaired wound healing.
关键词: metabolism,optical redox ratio,autofluorescence,multiphoton microscopy,in vivo imaging,diabetes,FAD,NADH,wound healing
更新于2025-09-23 15:23:52
-
Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging
摘要: Metabolic profiles vary across all levels of biological diversity, from cells to taxa. Two-photon fluorescence lifetime imaging microscopy (FLIM) facilitates metabolic characterisation of biological specimens by assaying the intrinsic autofluorescence of the ubiquitous coenzymes NAD(P)H and FAD. the potential of this method for characterising the diversity of organismal metabolism remains largely untapped. Using FLIM in Drosophila melanogaster, we show tissue-specificity in fluorescence lifetime that reflects variation in redox patterns. In particular, sperm cells exhibited elevated glycolysis relative to other tissues. We also show that sperm metabolism is phenotypically plastic: compared to male-stored sperm, sperm stored in the female’s storage organ showed a substantial reduction in the protein-bound FAD lifetime fraction but no change in the NAD(P)H profile. This study represents the first ex vivo investigation of sperm metabolism using FLIM.
关键词: two-photon fluorescence lifetime imaging microscopy,FAD,Drosophila melanogaster,NAD(P)H,glycolysis,sperm metabolism,OxPHOS
更新于2025-09-12 10:27:22