- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC) - Sao Paulo, Brazil (2019.10.7-2019.10.9)] 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC) - Few-Mode Erbium-Doped Fiber Amplifier Design Challenges for WDM Optical Networks
摘要: The use of optical spatial division multiplexing (SDM) technologies increases the capacity of the optical channel, allowing higher transmission rates than those observed in wavelength division multiplexing (WDM) optical systems based on single-mode fibers. In particular, spatial multiplexing based on multimode fibers allows the transmission of information in orthogonal modes. In these systems, the erbium-doped fiber amplifier (EDFA) remains essential to compensate for optical link losses. This paper presents the challenges to the development of EDFAs for WDM optical systems based on few-mode fibers, considering the addition of gain flattening filters and correction of gain calculation.
关键词: erbium-doped fiber amplifiers,space division multiplexing,gain equalization,Few-mode fiber amplifier
更新于2025-09-11 14:15:04
-
Studies on Temperature and Strain Sensitivities of a Few-mode Critical Wavelength Fiber Optic Sensor
摘要: This paper studied the relationship between the temperature/strain wavelength sensitivity of a fiber optic in-line Mach-Zehnder Interferometer (MZI) sensor and the wavelength separation of the measured wavelength to the critical wavelength (CWL) in a CWL-existed interference spectrum formed by interference between LP01 and LP02 modes. The in-line MZI fiber optic sensor has been constructed by splicing a section of specially designed few-mode fiber (FMF), which support LP01 and LP02 modes propagating in the fiber, between two pieces of single mode fiber. The propagation constant difference, Δβ, between the LP01 and LP02 modes, changes non-monotonously with wavelength and reaches a maximum at the CWL. As a result, in sensor operation, peaks on the different sides of the CWL then shift in opposite directions, and the associated temperature/strain sensitivities increase significantly when the measured wavelength points become close to the CWL, from both sides of the CWL. A theoretical analysis carried out has predicted that with this temperature/strain sensor approach, the temperature/strain wavelength sensitivities are governed by the wavelength difference between the measured wavelength and the CWL. This conclusion was seen to agree well with the experimental results obtained. Combining the wavelength shifts of the peaks and the CWL in the transmission spectrum of the SFS structure, this study has shown that this approach forms the basis of effective designs of high sensitivity sensors for multi-parameter detection and offering a large measurement range to satisfy the requirements needed for better industrial measurements.
关键词: few mode fiber,temperature sensitivity,In-line Mach-Zehnder interferometer,strain sensitivity,critical wavelength
更新于2025-09-09 09:28:46