- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ground based hyperspectral imaging for extensive mango yield estimation
摘要: Fruit yield estimation in orchard blocks is an important objective in the context of precision agriculture, as it makes it easier for the farmer to plan ahead and efficiently use resources. Nevertheless, its implementation is labour-intensive and involves the manual counting of the fruit present in the trees. While colour (RGB) has been widely shown to be successful and arguably sufficient for yield estimation in orchards, hyperspectral imaging (HSI) shows promise for more nuanced tasks such as disease detection, cultivar classification and fruit maturity estimation. Therefore, it is important to ask how appropriate is HSI for the task of yield estimation, with a view to performing all of these tasks with just one sensor. This paper presents a novel mango yield estimation pipeline using ground based line-scan HSI acquired from an unmanned ground vehicle. Hyperspectral images were collected on a commercial mango orchard block in December 2017 and pre-processed for illumination compensation. After tree delimitation and mango pixel identification, an optimisation process was carried out to obtain the best models for fruit counting, using mango counts obtained by manually counting the fruit on-tree, and using state-of-the-art RGB techniques for yield estimation. Models were validated and tested on hundreds of trees, and subsequently mapped. In testing, determination coefficients reached values of up to 0.75 against field counts (predicting 18 trees) and 0.83 against RGB mango counts (predicting 216 trees). These results suggest that line-scan HSI can be used to accurately estimate yield in orchards, especially in scenarios in which this technology is already chosen for the determination of other traits.
关键词: Field robotics,Computer vision,Lidar,Hyperspectral,Fruit counting
更新于2025-09-23 15:23:52
-
Supervised Learning of Natural-Terrain Traversability with Synthetic 3D Laser Scans
摘要: Autonomous navigation of ground vehicles on natural environments requires looking for traversable terrain continuously. This paper develops traversability classifiers for the three-dimensional (3D) point clouds acquired by the mobile robot Andabata on non-slippery solid ground. To this end, different supervised learning techniques from the Python library Scikit-learn are employed. Training and validation are performed with synthetic 3D laser scans that were labelled point by point automatically with the robotic simulator Gazebo. Good prediction results are obtained for most of the developed classifiers, which have also been tested successfully on real 3D laser scans acquired by Andabata in motion.
关键词: 3D laser scanner,field robotics,sensor simulation,traversability,supervised machine learning
更新于2025-09-23 15:19:57