修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Fabrication and photocatalytic performance evaluation of hydrodynamic erosion–resistant nano-TiO2–silicone resin composite films

    摘要: Herein, we present the preparation of nano-TiO2–silicone resin composite films by double liquid phase spray deposition. The films exhibit better adhesion stability and photocatalytic activity under a hydrodynamic erosion condition than conventional nano-TiO2 composite films. The TiO2 layer morphology and effective TiO2 coverage ratio (CR) were affected by the initial curing time (ICT) of the silicone resin, e.g., the increase in an ICT from 10 to 40 min resulted in a CR change from 79.1 to 98.7%. The surface morphology evolution of composite films was studied under a hydrodynamic erosion period of 4 weeks. Obtained results allowed the 4-week evolution to be divided into four stages (pitting, crack pregnant, banded stripping, and surface stripping periods), additionally revealed that the CR of all samples was remained above 65%. The photocatalytic activity of composite films before and after 4-week hydrodynamic erosion was evaluated by rhodamine B degradation experiments. The 4-week erosion only led to the decrease of the photodegradation efficiencies by less than 40% in all cases. Thus, the fabricated TiO2–silicone composite films demonstrated excellent durability and photocatalytic activity under the conditions of long-term hydrodynamic erosion, allowing one to conclude that this work paves the way to the fabrication of next-generation photocatalytic materials for industrial applications.

    关键词: Photocatalysis,Film formation mechanism,Silicone resin,Photodegradation,Hydrodynamic erosion resistance,Nano-TiO2

    更新于2025-09-23 15:23:52

  • <i>In situ</i> study of the film formation mechanism of organica??inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system

    摘要: As a coating method compatible with printing, one-step spin-coating is widely used for fabricating perovskite thin films. Controlling the crystal growth rate of two precursors is essential to obtain a homogeneous film morphology. However, the film formation mechanism and role of solvate systems during spin-coating have not yet been clearly revealed. In this work, we implemented the in situ grazing incidence wide-angle X-ray scattering of CH3NH3PbI3 perovskite material based on various additive systems to adjust the unbalanced crystal growth rate of CH3NH3I and PbI2. As we expected, the behavior of the solvate phase was strikingly mediated by various additives, and one of the additives greatly slowed the PbI2 solvate phase, thus overcoming the imbalance in the crystal growth rate. Consequently, the well-controlled perovskite films have both good film morphology and high photovoltaic performance with excellent reproducibility.

    关键词: in situ study,solvate phase,perovskite solar cells,film formation mechanism,additive system

    更新于2025-09-23 15:21:01