修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Using LiDAR to develop high-resolution reference models of forest structure and spatial pattern

    摘要: Successful restoration of degraded forest landscapes requires reference models that adequately capture structural heterogeneity at multiple spatial scales and for specific landforms. Despite this need, managers often lack access to reliable reference information, in large part because field-based methods for assessing variation in forest structure are costly and inherently suffer from limited replication and spatial coverage and, therefore, yield limited insights about the ecological structure of reference forests at landscape scales. LiDAR is a cost-effective alternative that can provide high-resolution characterizations of variation in forest structure among landform types. However, managers and researchers have been reluctant to use LiDAR for characterizing structure because of low confidence in its capacity to approximate actual tree distributions. By calculating bias in LiDAR estimates for a range of tree-height cutoffs, we improved LiDAR's ability to capture structural variability in terms of individual trees. We assessed bias in the processed LiDAR data by comparing datasets of field-measured and LiDAR-detected trees of various height classes in terms of overall number of trees and estimates of structure and spatial pattern in an important contemporary reference forest, the Sierra de San Pedro Martir National Park, Baja California, Mexico. Agreement between LiDAR- and field-based estimates of tree density, as well as estimates of forest structure and spatial pattern, was maximized by removing trees less than 12 m tall. We applied this height cutoff to LiDAR-detected trees of our study landscape, and asked if forest structure and spatial pattern varied across topographic settings. We found that canyons, shallow northerly, and shallow southerly slopes were structurally similar; each had a greater number of all trees, large trees, and large tree clumps than steep southerly slopes and ridges. Steep northerly slopes supported unique structures, with taller trees than ridges and shorter trees than canyons and shallow southerly slopes. Our results show that characterizations of forest structure based on LiDAR-detected trees are reasonably accurate when the focus is narrowed to the overstory. In addition, our finding of strong variation of forest structure and spatial pattern across topographic settings demonstrates the importance of developing reference models at the landscape scale, and highlights the need for replicated sampling among stands and landforms. Methods developed here should be useful to managers interested in using LiDAR to characterize distributions of medium and large overstory trees, particularly for the development of landscape-scale reference models.

    关键词: Ecological reference model,Forest structure,Sierra de San Pedro Martir,Spatial pattern,Landscape restoration,Spatial scale,LiDAR

    更新于2025-09-23 15:22:29

  • Forest structural diversity characterization in Mediterranean landscapes affected by fires using Airborne Laser Scanning data

    摘要: Forest fires can change forest structure and composition, and low-density Airborne Laser Scanning (ALS) can be a valuable tool for evaluating post-fire vegetation response. The aim of this study is to analyze the structural diversity differences in Mediterranean Pinus halepensis Mill. forests affected by wildfires on different dates from 1986 to 2009. Several types of ALS metrics, such as the Light Detection and Ranging (LiDAR) Height Diversity Index (LHDI), the LiDAR Height Evenness Index (LHEI), and vertical and horizontal continuity of vegetation, as well as topographic metrics, were obtained in raster format from low point density data. In order to map burned and unburned areas, differentiate fire occurrence dates, and distinguish between old and more recent fires, a sample of pixels was previously selected to assess the existence of differences in forest structure using the Kruskal–Wallis test. Then, k-nearest neighbors algorithm (k-NN), support vector machine (SVM) and random forest (RF) classifiers were compared to select the most accurate technique. The results showed that, in more recent fires, around 70% of the laser returns came from grass and shrub layers, yielding low LHDI and LHEI values (0.37–0.65 and 0.28–0.46, respectively). In contrast, the areas burned more than 20 years ago had higher LHDI and LHEI values due to the growth of the shrub and tree strata. The classification of burned and unburned areas yielded an overall accuracy of 89.64% using the RF method. SVM was the best classifier for identifying the structural differences between fires occurring on different dates, with an overall accuracy of 68.79%. Furthermore, SVM yielded an overall accuracy of 75.49% for the classification between old and more recent fires.

    关键词: machine learning,Forest structure,landscape,LIDAR

    更新于2025-09-19 17:13:59

  • Examining Forest Structure With Terrestrial Lidar: Suggestions and Novel Techniques Based on Comparisons Between Scanners and Forest Treatments

    摘要: Terrestrial laser scanners (TLSs) provide a tool to assess and monitor forest structure across forest landscapes. We present TLS methods, suggestions, and mapped guidelines for planning TLS acquisitions at varying scales and forest densities. We examined rates of point-density decline with distance from two TLS that acquire data at relatively high and low point density and found that the rates were nearly identical between scanners (p value <0.01), suggesting that our findings are applicable to a range of TLS types. Using unique, TLS-adapted processing methods, we determined the relative accuracy of TLS-derived plot-scale estimates of tree height, diameter-at-breast-height, height-to-canopy, tree counts, as well as treatment-scale tree density and patch metrics, using both high point density and low point density TLS among thinned and nonthinned forest treatments. The high-density TLS consistently provides more accurate estimates of plot-level metrics (R2 = 0.46 to 0.87) than the low-density TLS (R2 = (cid:1)0.14 to 0.53). At treatment scales, tree density estimates are similar among scanners (R2 = 0.95 vs. 0.71), as are canopy cover and patch metrics. We develop and present the normalized density-distance index (NDDI), which can account for up to 59% of the variance in estimate error and can be used to guide TLS-data acquisition plans. This index indicates whether a given location has generally higher point density (higher NDDI) relative to the distance from the scanner and can be used as a proxy for uncertainty. Using NDDI as a guide for fair comparison between scanners, both plot- and treatment-scale estimates improved.

    关键词: NDDI,forest management,point density,forest structure,Terrestrial laser scanning

    更新于2025-09-11 14:15:04

  • Estimating Mangrove Forest Volume Using Terrestrial Laser Scanning and UAV-Derived Structure-from-Motion

    摘要: Mangroves provide a variety of ecosystem services, which can be related to their structural complexity and ability to store carbon in the above ground biomass (AGB). Quantifying AGB in mangroves has traditionally been conducted using destructive, time-consuming, and costly methods, however, Structure-from-Motion Multi-View Stereo (SfM-MVS) combined with unmanned aerial vehicle (UAV) imagery may provide an alternative. Here, we compared the ability of SfM-MVS with terrestrial laser scanning (TLS) to capture forest structure and volume in three mangrove sites of differing stand age and species composition. We describe forest structure in terms of point density, while forest volume is estimated as a proxy for AGB using the surface differencing method. In general, SfM-MVS poorly captured mangrove forest structure, but was efficient in capturing the canopy height for volume estimations. The differences in volume estimations between TLS and SfM-MVS were higher in the juvenile age site (42.95%) than the mixed (28.23%) or mature (12.72%) age sites, with a higher stem density affecting point capture in both methods. These results can be used to inform non-destructive, cost-effective, and timely assessments of forest structure or AGB in mangroves in the future.

    关键词: mangroves,terrestrial laser scanning,forest structure,structure-from-motion

    更新于2025-09-11 14:15:04

  • Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem

    摘要: Forest processes that play an essential role in carbon sequestration, such as light use efficiency, photosynthetic capacity, and trace gas exchange, are closely tied to the three-dimensional structure of forest canopies. However, the vertical distribution of leaf traits is not uniform; leaves at varying vertical positions within the canopy are physiologically unique due to differing light and environmental conditions, which leads to higher carbon storage than if light conditions were constant throughout the canopy. Due to this within-canopy variation, three-dimensional structural traits are critical to improving our estimates of global carbon cycling and storage by Earth system models and to better understanding the effects of disturbances on carbon sequestration in forested ecosystems. In this study, we describe a reproducible and open-source methodology using the R programming language for estimating leaf area density (LAD; the total leaf area per unit of volume) from airborne LiDAR. Using this approach, we compare LAD estimates at the Smithsonian Environmental Research Center in Maryland, USA, from two airborne LiDAR systems, NEON AOP and NASA G-LiHT, which differ in survey and instrument specifications, collections goals, and laser pulse densities. Furthermore, we address the impacts of the spatial scale of analysis as well as differences in canopy penetration and pulse density on LAD and leaf area index (LAI) estimates, while offering potential solutions to enhance the accuracy of these estimates. LAD estimates from airborne LiDAR can be used to describe the three-dimensional structure of forests across entire landscapes. This information can help inform forest management and conservation decisions related to the estimation of aboveground biomass and productivity, the response of forests to large-scale disturbances, the impacts of drought on forest health, the conservation of bird habitat, as well as a host of other important forest processes and responses.

    关键词: Leaf area density,Airborne LiDAR,Leaf area index,Forest structure

    更新于2025-09-11 14:15:04