- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-visible-near infrared photodetectors; 自催化生长GaSb纳米线及其在高性能紫外-可见-近红外光电探测器中的应用;
摘要: A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires, where Ga droplets were utilized as the catalysts. The as-grown GaSb nanowires exhibited typical p-type semiconductor behavior with the calculated hole mobility of about 0.042 cm2 V?1 s?1. The photoresponse properties of the GaSb nanowires were studied by fabricating nanowire photodetectors on both rigid and flexible substrates. The results revealed that the photodetectors exhibited broad spectral response ranging from ultraviolet, visible, to near-infrared region. For the device on rigid substrate, the corresponding responsivity and the detectivity were calculated to be 3.86×103 A W?1 and 3.15×1013 Jones for 500 nm light, and 7.22×102 A W?1 and 5.90×1012 Jones for 808 nm light, respectively, which were the highest value compared with those of other reported Ga1?xInxAsySb1?y structure nanowires. Besides, the flexible photodetectors not only maintained the comparable good photoresponse properties as the rigid one, but also possessed excellent mechanical flexibility and stability. This study could facilitate the understanding on the fundamental characteristics of self-catalyzed grown GaSb nanowires and the design of functional nano-optoelectronic devices based on Gasb nanowires.
关键词: photoresponse,GaSb nanowires,chemical vapor deposition,mobility,near-infrared,flexible
更新于2025-09-12 10:27:22
-
[IEEE 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) - Qingdao (2018.10.31-2018.11.3)] 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) - Orientation controlled GaSb nanowires: from growth to application
摘要: In recent years, high-mobility GaSb nanowires have received tremendous attention for high-performance p-type transistors; however, due to the difficulty in achieving thin, uniform and orientation-controlled nanowires (NWs), there is limited report until now addressing their orientation-dependent properties in this important one-dimensional material system, where all these are essential information for the deployment of applications. Using various GaSb NWs CMOS-compatible Pd catalysts, we demonstrated the formation of high-mobility (cid:1766)111(cid:1767)-oriented GaSb nanowires (NWs) via vapor-solid-solid (VSS) growth by the newly developed surfactant-assisted chemical vapor deposition through a complementary experimental and theoretical approach. In contrast to NWs formed by the conventional vapor-liquid-solid (VLS) mechanism, cylindrical-shaped Pd5Ga4 catalytic seeds were present in solid catalysts, our Pd-catalyzed VSS-NWs. As stoichiometric Pd5Ga4 was found to have the lowest crystal surface energy and thus giving rise to a minimal surface diffusion as well as an optimal in-plane interface interface for efficient orientation at epitaxial NW nucleation. Over 95% high crystalline quality NWs were grown in (cid:1766)111(cid:1767) orientation for a wide diameter range of between 10 and 70 nm. Back-gated the field-effect Pd-catalyzed GaSb NWs exhibit a superior peak hole mobility of ~330 cm2 V-1 s-1, close to the mobility limit for a NW channel diameter of ~30 nm with a free carrier concentration of ~1018 cm-3. This suggests that the NWs have excellent homogeneity in phase purity, growth orientation, electrical characteristics. Contact printing process was also used to fabricate large-scale assembly of Pd-catalyzed GaSb NW parallel arrays, confirming the potential constructions and applications of these high-performance electronic devices.
关键词: vapor-solid-solid growth,GaSb nanowires,high-mobility,CMOS-compatible,orientation-controlled
更新于2025-09-11 14:15:04