修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

14 条数据
?? 中文(中国)
  • Automatic Mapping of Center Line of Railway Tracks using Global Navigation Satellite System, Inertial Measurement Unit and Laser Scanner

    摘要: Up-to-date geodatasets on railway infrastructure are valuable resources for the field of transportation. This paper investigates three methods for mapping the center lines of railway tracks using heterogeneous sensor data: (i) conditional selection of satellite navigation (GNSS) data, (ii) a combination of inertial measurements (IMU data) and GNSS data in a Kalman filtering and smoothing framework and (iii) extraction of center lines from laser scanner data. Several combinations of the methods are compared with a focus on mapping in tree-covered areas. The center lines of the railway tracks are extracted by applying these methods to a test dataset collected by a road-rail vehicle. The guard rails in the test area were also extracted during the center line detection process. The combination of methods (i) and (ii) gave the best result for the track on which the measurement vehicle had moved, mapping almost 100% of the track. The combination of methods (ii) and (iii) and the combination of all three methods gave the best result for the other parallel tracks, mapping between 25% and 80%. The mean perpendicular distance of the mapped center lines from the reference data was 1.49 meters.

    关键词: Inertial Measurement Unit,Global Navigation Satellite System,automated mapping,Kalman filter,laser scanner,railway tracks

    更新于2025-11-21 11:01:37

  • Incoherent Range Walk Compensation for Spaceborne GNSS-R Imaging

    摘要: Global navigation satellite system reflectometry (GNSS-R) receivers produce delay-Doppler maps (DDMs) by incoherently integrating coherent integration results. Due to system dynamics, during incoherent integration, the receiver aligns each coherent result by tracking the delay and Doppler of the specular point. This is known to cause a blurring of the spatial footprint of the Woodward ambiguity function (WAF) on the reflecting surface. In this paper, we demonstrate that the blurring of the WAF varies over the glistening zone (GZ), and even if a fixed point on the ground is tracked, blurring still occurs. We derive the expressions for the delay and Doppler change rates over the GZ and then predict the error introduced by range walk for typical GNSS-R scatterometry configurations. We find that ≈6 dB of loss is expected for a point scatterer near the edge of the GZ when a fixed point on the surface is tracked. The incoherent range walk compensation (IRWC) method is then presented for GNSS-R receivers to mitigate this loss. The IRWC method focuses the power in the DDM to the isodelay and iso-Doppler configuration occurring at the midpoint of the integration time. DDMs produced by tracking a fixed point with and without IRWC are simulated, and errors are found to be in agreement with those predicted. Spatial domain GNSS-R products will be improved with IRWC. Target detection will benefit from a larger usable swath, allowing longer tracking and detection times as a result of the increased target to clutter and noise ratio. At the same time, imaging applications will no longer suffer from a spatially variant blurring of the WAF, which limits the resolution of the estimated products. IRWC is shown to mitigate the range migration losses and improve the SNR of an imaging GNSS-R receiver by ≈6 dB near the edge of the GZ.

    关键词: integration,global navigation satellite system reflectometry (GNSS-R),reflectometry,imaging,target detection,receiver,incoherent range walk compensation (IRWC),Dynamic corrections

    更新于2025-09-23 15:23:52

  • Geometric Distortion Correction of Spaceborne GNSS-R Delay-Doppler Map Using Reconstruction

    摘要: For spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), the delay difference of direct and reflected GNSS signals among successive snapshots changes rapidly because of the high dynamics of low earth orbital and GNSS satellites. This change has to be compensated to avoid the distortion of incoherently averaged delay-Doppler map (DDM). The method to refresh the correlation window on each coherent integration time period may require too many instrument resources or too much data to be uploaded from the ground station. This letter proposes a new postprocessing approach based on the motion degradation model of DDM and the reconstruction to replace real-time compensation. Raw sampled data from UK TechDemoSat-1 are used to verify the availability of proposed approach. The results show that after reconstruction for the distorted DDM, the DDM accuracies relative to that compensated in real time are significantly improved.

    关键词: Global Navigation Satellite System-Reflectometry (GNSS-R),reconstruction,Distorted delay-Doppler map (DDM)

    更新于2025-09-23 15:22:29

  • Comparing sUAS Photogrammetrically-Derived Point Clouds with GNSS Measurements and Terrestrial Laser Scanning for Topographic Mapping

    摘要: Interest in small unmanned aircraft systems (sUAS) for topographic mapping has significantly grown in recent years, driven in part by technological advancements that have made it possible to survey small- to medium-sized areas quickly and at low cost using sUAS aerial photography and digital photogrammetry. Although this approach can produce dense point clouds of topographic measurements, they have not been tested extensively to provide insights on accuracy levels for topographic mapping. This case study examines the accuracy of a sUAS-derived point cloud of a parking lot located at the Citizens Bank Arena (CBA) in Ontario, California, by comparing it to ground control points (GCPs) measured using global navigation satellite system (GNSS) data corrected with real-time kinematic (RTK) and to data from a terrestrial laser scanning (TLS) survey. We intentionally chose a flat surface due to the prevalence of flat scenes in sUAS mapping and the challenges they pose for accurately deriving vertical measurements. When the GNSS-RTK survey was compared to the sUAS point cloud, the residuals were found to be on average 18 mm and ?20 mm for the horizontal and vertical components. Furthermore, when the sUAS point cloud was compared to the TLS point cloud, the average difference observed in the vertical component was 2 mm with a standard deviation of 31 mm. These results indicate that sUAS imagery can produce point clouds comparable to traditional topographic mapping methods and support other studies showing that sUAS photogrammetry provides a cost-effective, safe, efficient, and accurate solution for topographic mapping.

    关键词: terrestrial laser scanning (TLS),small unmanned aircraft system (sUAS),point cloud,accuracy,global navigation satellite system (GNSS),photogrammetry

    更新于2025-09-19 17:13:59

  • [IEEE 2019 21st International Conference on Transparent Optical Networks (ICTON) - Angers, France (2019.7.9-2019.7.13)] 2019 21st International Conference on Transparent Optical Networks (ICTON) - Athermal Operation of High-Order Slotted Lasers for Communications Applications

    摘要: Jamming is the act of intentionally directing powerful electromagnetic waves toward a victim receiver with the ultimate goal of denying its operations. This paper describes the main types of Global Navigation Satellite System (GNSS) jammers and reviews their impact on GNSS receivers. A survey of state-of-the-art methods for jamming detection is also provided. Different detection approaches are investigated with respect to the receiver stage where they can be implemented.

    关键词: interference,Global Navigation Satellite System (GNSS),jamming,Detection

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Laser marking system for plastic products

    摘要: Fast precise point positioning (Fast-PPP) is a satellite-based navigation technique using an accurate real-time ionospheric modeling to achieve high accuracy quickly. In this paper, an end-to-end performance assessment of Fast-PPP is presented in near-maximum Solar Cycle conditions; from the accuracy of the Central Processing Facility corrections, to the user positioning. A planetary distribution of permanent receivers including challenging conditions at equatorial latitudes, is navigated in pure kinematic mode, located from 100 to 1300 km away from the nearest reference station used to derive the ionospheric model. It is shown that satellite orbits and clocks accurate to few centimeters and few tenths of nanoseconds, used in conjunction with an ionosphere with an accuracy better than 1 Total Electron Content Unit (16 cm in L1) reduce the convergence time of dual-frequency Precise Point Positioning, to decimeter-level (3-D) solutions. Horizontal convergence times are shortened 40% to 90%, whereas the vertical components are reduced by 20% to 60%. A metric to evaluate the quality of any ionospheric model for Global Navigation Satellite System is also proposed. The ionospheric modeling accuracy is directly translated to mass-market single-frequency users. The 95th percentile of horizontal and vertical accuracies is shown to be 40 and 60 cm for single-frequency users and 9 and 16 cm for dual-frequency users. The tradeoff between the formal and actual positioning errors has been carefully studied to set realistic confidence levels to the corrections.

    关键词: undifferenced ambiguity fixing,Global Navigation Satellite System (GNSS),real-time ionospheric corrections,precise point positioning (PPP)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC) - Orlando, FL, USA (2019.4.14-2019.4.18)] 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC) - Linear Zeeman Effect on Iodine-Based Frequency Stabilized Laser

    摘要: Jamming is the act of intentionally directing powerful electromagnetic waves toward a victim receiver with the ultimate goal of denying its operations. This paper describes the main types of Global Navigation Satellite System (GNSS) jammers and reviews their impact on GNSS receivers. A survey of state-of-the-art methods for jamming detection is also provided. Different detection approaches are investigated with respect to the receiver stage where they can be implemented.

    关键词: Global Navigation Satellite System (GNSS),interference,jamming,Detection

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Photonics North (PN) - Quebec City, QC, Canada (2019.5.21-2019.5.23)] 2019 Photonics North (PN) - Optical Characterization of InAlGaAs on InP for Monochromatic Photonic Power Conversion

    摘要: Jamming is the act of intentionally directing powerful electromagnetic waves toward a victim receiver with the ultimate goal of denying its operations. This paper describes the main types of Global Navigation Satellite System (GNSS) jammers and reviews their impact on GNSS receivers. A survey of state-of-the-art methods for jamming detection is also provided. Different detection approaches are investigated with respect to the receiver stage where they can be implemented.

    关键词: interference,Global Navigation Satellite System (GNSS),jamming,Detection

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Conductive Adhesives for Metallization of Interdigitated Back Contact Solar Cells

    摘要: Jamming is the act of intentionally directing powerful electromagnetic waves toward a victim receiver with the ultimate goal of denying its operations. This paper describes the main types of Global Navigation Satellite System (GNSS) jammers and reviews their impact on GNSS receivers. A survey of state-of-the-art methods for jamming detection is also provided. Different detection approaches are investigated with respect to the receiver stage where they can be implemented.

    关键词: interference,Global Navigation Satellite System (GNSS),jamming,Detection

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Cross-characterization methods to obtain an a??absolutea?? quantification of Cu(In,Ga)Se <sub/>2</sub> in-depth and at the surface

    摘要: The uncertainty of differential code bias (DCB) is one of the main error sources in the low Earth orbit (LEO) based total electron content (TEC) retrieval, whereas the derivation of the LEO DCB is not systematically studied. In this paper, we propose an improved DCB estimation method (ZERO method) based on the assumption that the LEO-based TEC can reach zero and also optimize the parameter configuration in the commonly used least square method (LSQ method). In the improved ZERO method, the combination of the lower quartile minimum relative TEC during each orbital revolution with the daily minimum relative TEC gives a stable and reliable DCB estimation. For the LSQ method, the 3-TECU cutoff vertical TEC with 10? cutoff elevation is considered to offer a reasonable DCB estimation. Subsequently, Global Positioning System (GPS) observations from multiple LEO satellites at different altitudes are used to study the variability of the LEO DCBs. Our results revealed that the LEO DCBs underwent obvious long-term variation and periodic oscillations of months. Moreover, the CHAMP data illustrated that the long-term variation of LEO DCBs is partly associated with the GPS satellite replacement, and the periodic variation can be attributed to the variation of the hardware thermal status, represented by the receiver CPU temperature in this study.

    关键词: Global Navigation Satellite System (GNSS),total electron content (TEC),Differential code bias (DCB),low Earth orbit (LEO) satellite

    更新于2025-09-16 10:30:52