修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

170 条数据
?? 中文(中国)
  • Controllable Synthesis and Catalytic Performance of Gold Nanoparticles with Cucurbit[n]urils (n = 5–8)

    摘要: A series of gold nanoparticles (AuNPs) was prepared in situ with different cucurbit[n]urils (CB[n]s) in an alkaline aqueous solution. The nanoparticle sizes can be well controlled by CB[n]s (n = 5, 6, 7, 8) with different ring sizes. The packing densities of CB[5–8] and free surface area on AuNPs were determined. A direct relationship was found between the ring size and packing density of CB[n]s with respect to the AuNP-catalyzed reduction of 4-nitrophenol in the presence of NaBH4. The larger particle size and higher surface coverage of bigger CB[n]-capped AuNPs significantly decreased the catalytic activity. Furthermore, this work could lead to new applications that utilize AuNPs under an overlayer of CB[n]s for catalysis, sensing, and drug delivery.

    关键词: gold nanoparticles,catalysis,cucurbit[n]urils,controllable synthesis

    更新于2025-09-04 15:30:14

  • Fast discrimination of bacteria using a filter paper–based SERS platform and PLS-DA with uncertainty estimation

    摘要: Rapid and reliable identification of bacteria is an important issue in food, medical, forensic, and environmental sciences; however, conventional procedures are time-consuming and often require extensive financial and human resources. Herein, we present a label-free method for bacterial discrimination using surface-enhanced Raman spectroscopy (SERS) and partial least squares discriminant analysis (PLS-DA). Filter paper decorated with gold nanoparticles was fabricated by the dip-coating method and it was utilized as a flexible and highly efficient SERS substrate. Suspensions of bacterial samples from three genera and six species were directly deposited on the filter paper–based SERS substrates before measurements. PLS-DA was successfully employed as a multivariate supervised model to classify and identify bacteria with efficiency, sensitivity, and specificity rates of 100% for all test samples. Variable importance in projection was associated with the presence/absence of some purine metabolites, whereas confidence intervals for each sample in the PLS-DA model were calculated using a resampling bootstrap procedure. Additionally, a potential new species of bacteria was analyzed by the proposed method and the result was in agreement with that obtained via 16S rRNA gene sequence analysis, thereby indicating that the SERS/PLS-DA approach has the potential to be a valuable tool for the discovery of novel bacteria.

    关键词: Chemometrics, partial least squares discriminant analysis,Surface-enhanced Raman spectroscopy,Reliability estimation,16S rRNA gene sequence analysis,Gold nanoparticles

    更新于2025-09-04 15:30:14

  • High-Performance Transparent and Flexible Electrodes Made by Flash-Light Sintering of Gold Nanoparticles

    摘要: Metallic nanowire-based transparent electrodes (TEs) are potential alternatives to indium tin oxide (ITO). To achieve a high performance [sheet resistance (Rs) <100 Ω/sq, transmittance (T%) > 90%], the nanowires must have a high length-to-diameter (L/D) ratio to minimize the number of wire-to-wire junctions. Attempts to produce TEs with gold nanowires have been made, and the results reveal difficulties in achieving the requirements. A successful strategy involves creating templated gold nanonetworks through multiple procedures. Here, we present a simple and efficient method that uses flash-light sintering of a gold nanonetwork film into gold TEs (Rs: 82.9 Ω/sq, T%: 91.79%) on a thin polycarbonate film (25 μm). The produced gold TEs have excellent mechanical, electrical, optical and chemical stabilities. Mechanisms of the formation of gold nano-networks and the effect of flash-light have been analyzed. Our findings provide a scalable process for producing transparent and flexible gold electrodes with a total processing time of less than 8 min without the use of heating, vacuum processing, organic chemicals and without any material loss. This is possible because all the gold nanoparticles have been aggregated and filtrated on the filter membranes. The area density of gold is 0.094 g/m2 leading low material costs, which is very competitive with the price of commercial TEs.

    关键词: flexible electrode,high performance,transparent electrode,gold nanoparticles,flash-light sintering

    更新于2025-09-04 15:30:14

  • Specific Targeting of Breast Cancer Cells with Antibodies Conjugated Gold Nanoparticles

    摘要: Background and Objective: Gold nanoparticles (AuNP) conjugated with either EpCAM or TARP antibodies and an anticancer agent, paclitaxel (PTX), for tumour targeting and therapy were synthesised using a simple chemistry. Methods: The AuNP surface was functionalised using a two-step modification approach. The conjugates were characterised using Transmission Electron Microscopy (TEM) and infrared spectroscopy. Results: The cytotoxicity assay of T47D cells treated with only antibodies conjugated to the gold nanoparticles did not show any cytotoxicity to the cells, which indicates these nanoconjugates are suitable for intracellular delivery of anticancer drugs. Conclusion: When using AuNPs with antibodies and the cancer chemotherapy agent PTX attached simultaneously to the functionalised AuNPs, the reduction of cell viability was significantly higher compared to PTX-thiol-AuNPs conjugate system where no antibodies were used.

    关键词: drug delivery,antibodies,paclitaxel,EpCAM,Gold nanoparticles,TARP,cytotoxicity

    更新于2025-09-04 15:30:14

  • Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement

    摘要: Regulation of intracellular pH is critically important for many cellular functions. The quantification of proton extrusion in different types of cells and physiological conditions is pivotal to fully elucidate the mechanisms of pH homeostasis. Here we show the use of gold nanoparticles (AuNP) to create a high spatial resolution sensor for measuring extracellular pH in proximity of the cell membrane. We test the sensor on HepG2 liver cancer cells and MKN28 gastric cancer cells before and after inhibition of Na+/H+ exchanger. The gold surface conjugation strategy is conceived with a twofold purpose: i) to anchor the AuNP to the membrane proteins and ii) to quantify the local pH from AuNP using surface enhanced Raman spectroscopy (SERS). The nanometer size of the cell membrane anchored sensor and the use of SERS enable us to visualize highly localized variation of pH induced by H+ extrusion, which is particularly upregulated in cancer cells.

    关键词: cancer cells,SERS,cell surface labelling,pH measurement,gold nanoparticles

    更新于2025-09-04 15:30:14

  • The Effects of Hydrostatic Pressure on the Surface Plasmon Resonance of Gold Nanocrystals

    摘要: The surface plasmon resonances of gold nanospheres and nanorods have been measured as a function of hydrostatic pressure up to 17 GPa in methanol-ethanol 4:1 solvent and up to 10 GPa in paraffin. Both the sphere resonance and the longitudinal rod resonance exhibit redshifts while the transverse rod mode shows an extremely weak redshift or blueshift depending on the nanorod aspect ratio. Solidification of the solvent around 11 GPa causes some aggregation of the particles, readily identified through broadening of the SP band and further redshifting. Loading and unloading cycles show only minimal hysteresis in the spectra if the pressure remains below 11 GPa. The surface plasmon shifts are the result of two competing effects. Compression of the conduction electrons in the metals increases the bulk plasma frequency, which causes a blueshift. However, the increase in the solvent density under hydrostatic load leads to an increase in the solvent refractive index, which in turn leads to a redshift. We find that after accounting for the solvent contribution, we can spectroscopically determine the bulk modulus of the gold nanoparticles with a precision of 10%. The value obtained of K0 = 190 GPa is significantly higher than the value for bulk gold (167 GPa). Furthermore, we show that pressure-induced solidification causes a significant broadening and anomalous shift of the surface plasmon band that we attribute to aggregation and nanorod deformation.

    关键词: optical absorption,refractive index,hydrostatic pressure,surface plasmon resonance,bulk modulus,gold nanoparticles

    更新于2025-09-04 15:30:14

  • AN ALGORITHM TO DETERMINE THE NANODOSIMETRIC IMPACT OF GOLD NANOPARTICLES ON CELL MODELS

    摘要: High-Z nanomaterials, e.g. gold nanoparticles (GNPs), are being investigated worldwide for potential application in radiation imaging and therapy. Photon irradiation of cells containing GNP was shown to produce enhanced DNA damage which is believed to be related to the increased secondary electron (SE) yield and ionization density. In this work, an algorithm was developed for simulating the physical radiation damage inside the nucleus of a spherical cell model for the case of uniformly distributed GNPs within the cytoplasm. Previously calculated energy spectra of SE emerging from a single NP irradiated with different photon sources are used as input to obtain the SE energy spectrum at the surface of the cell nucleus. In a second step, the SE transport inside the cell nucleus is simulated with a track structure Monte Carlo code to obtain the spatial distribution of ionizations. The preliminary results presented here show that the developed algorithm allows for a fast calculation of the SE spectra at the cell nucleus surface, thus enabling a more realistic assessment of the ionization density inside the cell nucleus than that obtained by the simulation of a single GNP. Furthermore, the algorithm can be easily adapted to investigate both the effect of GNP clustering and the impact of GNP–GNP interactions on SE spectra.

    关键词: radiation therapy,secondary electrons,gold nanoparticles,Monte Carlo simulation,ionization density

    更新于2025-09-04 15:30:14

  • Physicochemical and Ion-Sensing Properties of Benzofurazan-Appended Calix[4]arene in Solution and on Gold Nanoparticles: Spectroscopy, Microscopy, and DFT Computations in Support of the Species of Recognition

    摘要: A calix[4]arene conjugate (L) functionalized at the lower rim with a benzofurazan fluorophore (NBD) and at the upper rim with a thioether moiety has been synthesized and characterized by 1H NMR, 13C NMR, and mass spectrometry techniques. Both the absorption and emission spectral data for L in different solvents exhibited progressive changes with an increase in polarity. Ion recognition studies were performed by absorption and fluorescence spectroscopy using 10 different metal ions. Among these, Hg2+ exhibited greater changes in these spectra, whereas Cu2+ showed only significant changes and all other ions showed no change in the spectral features. Although the Hg2+ has dominant influence on the spectral features and provides a detection limit of 56.0 ± 0.6 ppb, the selectivity was hampered because of the presence of the derivatizations present on both the rims of L for ion interaction in solution. Therefore, L was immobilized onto gold nanoparticles (AuNPL) so that the upper rim derivatizations anchor onto the gold surface through Au?S interactions, and this leaves out only the lower rim NBD derivatization for interaction with ions selectively. The AuNPL’s were characterized by transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The surface characteristics were analyzed by contact angle measurements. The AuNPL’s exhibit greater selectivity and enhanced sensitivity for Hg2+ ions with a lowest detection limit of 48.0 ± 0.8 ppb. The immobilization of L onto AuNPs was reflected in the corresponding fluorescence lifetime values, and the addition of Hg2+ to either L or AuNPL showed fluorescence quenching. The reversible recognition of Hg2+ by L was demonstrated by titrating L or AuNPL with Hg2+ followed by tetra-butyl ammonium iodide for several cycles. The structural features of Hg2+-bound species were demonstrated by density functional theory computations and were supported by the XPS data. The Hg2+ induces aggregated fibrillar morphology into supramolecular L, as demonstrated by microscopy when Hg2+ was added either to L or to AuNPL, supporting aggregation-caused quenching.

    关键词: calix[4]arene,benzofurazan,Hg2+ detection,DFT computations,fluorescence quenching,gold nanoparticles

    更新于2025-09-04 15:30:14

  • Optical Simulations of Self-assembly Relevant Gold Aggregates: A Comparative Study

    摘要: In this study, visible light extinction spectra of different gold nanoparticle assemblies were simulated using boundary element method (BEM) in order to investigate the optical properties of structures which determine the experimentally measured spectra during the self-assembly of the particles. Numerous different optically dominant particle arrangements can evolve depending on the underlying physicochemical mechanism of the clustering process itself: one-dimensional chains, two-dimensional arrays or three-dimensional clusters can be formed in the solutions or at interfaces. Experimentally the aggregation or clustering of gold nanoparticles can be conveniently followed by spectroscopic techniques due to the plasmon coupling related profound effect of particle aggregation on the visible extinction spectrum. However, the measured spectra usually contain the optical response of various aggregate structures. Additionally, small changes of the interparticle distance can have a significant impact on the frequency of the coupled mode. In order to assess the contribution of the different structures to the experimentally measurable extinction spectra during particle clustering, different model structures (chains, array and 3D-cluster) have been simulated, where the distance between the particles was varied as well.

    关键词: 3D cluster,boundary element method,2D heptamer,self-assembly,optical simulations,nanoparticle chains,gold nanoparticles

    更新于2025-09-04 15:30:14

  • Generic Assay of Sulfur-Containing Compounds Based on Kinetics Inhibition of Gold Nanoparticle Photochemical Growth

    摘要: This work describes a new, equipment-free, generic method for the determination of sulfur-containing compounds that is based on their ability to slow down the photoreduction kinetics of gold ions to gold nanoparticles. The method involves tracking the time required for a red coloration to appear in the tested sample, indicative of the formation of gold nanoparticles, and compare the measured time relative to a control sample in the absence of the target analyte. The method is applicable with minimal and simple steps requiring only two solutions (i.e., a bu?er and a gold solution), a source of light (UV or visible), and a timer. The method responds to a large variety of sulfur-containing compounds including thiols, thioesters, disul?des, thiophosphates, metal?sulfur bonds, and inorganic sulfur and was therefore such as applied to the determination of a variety of compounds dithiocarbamate and organophosphorous pesticides, biothiols, pharmaceutically active compounds, and sul?des in di?erent samples such as natural waters and wastewater, biological ?uids, and prescription drugs. The analytical ?gures of merit of the method include satisfactory sensitivity (quantitation limits at the low μM levels), good recoveries (from 93 to 109%), and satisfactory reproducibility (from 4.8 to 9.8%). The method is easily adoptable to both laboratory settings and nonlaboratory conditions for quantitative and semiquantitative analysis, respectively, is user-friendly even for the minimally trained user, and can be performed with limited resources at low cost.

    关键词: equipment-free method,sulfur-containing compounds,time-based assay,gold nanoparticles,photochemical reduction

    更新于2025-09-04 15:30:14