- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Characterization of gastric cells infection by diverse Helicobacter pylori strains through Fourier-transform infrared spectroscopy
摘要: The infection of Helicobacter pylori, covering 50% of the world-population, leads to diverse gastric diseases as ulcers and cancer along the life-time of the human host. To promote the discovery of biomarkers of bacterial infection, in the present work, Fourier-Transform infrared spectra were acquired from adenocarcinoma gastric cells, incubated with H. pylori strains presenting different genotypes concerning the virulent factors cytotoxin associated gene A and vacuolating cytotoxin A. Defined absorbance ratios were evaluated by diverse methods of statistical inference, according to the fulfillment of the tests assumptions. It was possible to define from the gastric cells, diverse absorbance ratios enabling to discriminate: i) The infection; ii) The bacteria genotype; and iii) The gastric disease of the patients from which the bacteria were isolated. These biomarkers could fasten the knowledge of the complex infection process while promoting a platform for a new diagnostic method, rapid but also specific and sensitive towards the diagnosis of both infection and bacterial virulence.
关键词: gastric adenocarcinoma cells,biomarkers,Helicobacter pylori,infrared spectroscopy
更新于2025-09-23 15:21:21
-
The in vitro Photoinactivation of Helicobacter pylori by a Novel LED-Based Device
摘要: The rise of antibiotic resistance is the main cause for the failure of conventional antibiotic therapy of Helicobacter pylori infection, which is often associated with severe gastric diseases, including gastric cancer. In the last years, alternative non-pharmacological approaches have been considered in the treatment of H. pylori infection. Among these, antimicrobial PhotoDynamic Therapy (aPDT), a light-based treatment able to photoinactivate a wide range of bacteria, viruses, fungal and protozoan parasites, could represent a promising therapeutic strategy. In the case of H. pylori, aPDT can exploit photoactive endogenous porphyrins, such as protoporphyrin IX and coproporphyrin I and III, to induce photokilling, without any other exogenous photosensitizers. With the aim of developing an ingestible LED-based robotic pill for minimally invasive intragastric treatment of H. pylori infection, it is crucial to determine the best illumination parameters to activate the endogenous photosensitizers. In this study the photokilling effect on H. pylori has been evaluated by using a novel LED-based device, designed for testing the appropriate LEDs for the pill and suitable to perform in vitro irradiation experiments. Exposure to visible light induced bacterial photokilling most effectively at 405 nm and 460 nm. Sub-lethal light dose at 405 nm caused morphological changes on bacterial surface indicating the cell wall as one of the main targets of photodamage. For the first time endogenous photosensitizing molecules other than porphyrins, such as flavins, have been suggested to be involved in the 460 nm H. pylori photoinactivation.
关键词: flavins,porphyrins,LEDs,antimicrobial PDT,Helicobacter pylori
更新于2025-09-19 17:13:59