- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
ZnxCd1-xSe nanoparticles decorated ordered mesoporous ZnO inverse opal with binder-free heterojunction interfaces for highly efficient photoelectrochemical water splitting
摘要: Well-defined porous heteronanostructures with broad light absorption range and efficient charge transfer are the key challenges towards developing efficient photoanodes for photoelectrochemical (PEC) water splitting. Herein, we reported a facile template and continuous ion exchange method to fabricate three-dimensional ordered mesoporous (3DOM) ZnO/ZnxCd1-xSe inverse opal with binder-free heterojunction interfaces on F-doped SnO2 glass. The heteroepitaxial growth of ZnxCd1-xSe shell layer on ZnO inverse opal skeleton surface provided favorable type-II band alignment, low interfacial resistance, and high visible light absorption. As expected, the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal achieved a significant saturated photocurrent density of 24.76 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) in 0.25 M Na2S and 0.35 M Na2SO3 aqueous solution under AM 1.5 G simulated solar light irradiation (100 mW cm-2), which is 25 times higher than that of the pristine ZnO (0.99 mA cm-2 at 1.23 V versus RHE) photoanode. The maximum photoconversion efficiency reached 10.64% for the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal at an applied potential of 0.52 V versus RHE, an about 22.63 times increase relative to that of the pristine ZnO inverse opal (0.47% at 0.61 V versus RHE). In addition, the photostability of the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal photoanode was also greatly improved in the electrolyte solution, 82.6% initial value was maintained even after 3000 s continuous light illumination without any protective coating layer. Such prominent PEC performances of the as-prepared 3DOM ZnO/ZnxCd1-xSe inverse opal can be ascribed to the improved visible light harvesting and enhanced charge separation/collection efficiency. This work provides a fundamental insight to design the efficient photoanode for high performance water splitting.
关键词: Heteroepitaxial growth,ZnO/ZnxCd1-xSe,Inverse opal,Photoelectrochemical water splitting,Heterojunction interface
更新于2025-09-23 15:23:52
-
Effect of Buffer Layer Structure on the Structural Properties of GaAs Epitaxial Layers Grown on GaP Substrates
摘要: Three-μm-thick GaAs layers were grown on 2°-off (100) GaP substrates by employing various buffer layer structures, which consist of GaAsP- and InGaAs-based ternary compound semiconductors. To confirm the effects, we altered the layer thickness, the interface lattice mismatch, and number of the layers in the buffer layer structure, and also a superlattice structure was employed in some of the buffer layers. The lattice constants of the layers were controlled by changing the As/P and In/Ga compound ratios. The crystal properties of the grown GaAs layers were characterized with X-ray diffraction, photoluminescence, and etch pit density observations. The effect of the buffer layer structure on the crystallographic character of the GaAs layers was analyzed by introducing a parameter that is a function of the thickness and interface lattice mismatch of each layer in the buffer layer structure. The results suggest that the GaAs layer is relatively relaxed but contains a greater number of dislocations for smaller layer thicknesses and greater lattice mismatches in the buffer layer structure, while the GaAs layer has a smaller number of dislocations but a rather deformed lattice structure for larger layer thicknesses and smaller lattice mismatches. Our parameter is useful for developing design principles of buffer layer structures.
关键词: A3. Heteroepitaxial growth,B2. Semiconducting III-V materials,B3. Solar cells,A3. Metalorganic vapor phase epitaxy
更新于2025-09-23 15:21:01