- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- parasitic patches
- Direct coupled
- gap coupled
- hybrid coupled
- composite mode
- Pumped hydro storage
- Reliability
- Particle swarm optimization
- Hybrid system
- photovoltaic power
- Electrical Engineering and Automation
- Electronic Science and Technology
- State Grid Sichuan Electric Power Research Institute
- SVKM’s DJSCE
- University of Electronic Science and Technology of China
- State Grid Sichuan Electric Power Company
- DIAT
- Aalborg University
- Tsinghua Sichuan Energy Internet Research Institute
-
Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications
摘要: Flower-shaped organic-inorganic hybrid nanostructures, termed nanoflowers, have received considerable recent attention as they possess greatly enhanced activity, stability, durability, and even selectivity of entrapped organic biomolecules, which are much better than those from the conventional methods. They can be synthesized simply via co-incubation of organic and inorganic components in aqueous buffer at room temperature and yield hierarchical nanostructures with large surface-to-volume ratios, allowing for low-cost production by easy scale-up, as well as the high loading capacity of biomolecules without severe mass transfer limitations. Since a pioneering study reported on hybrid nanoflowers prepared with protein and copper sulfate, many other organic and inorganic components, which endow nanoflowers with diverse functionalities, have been employed. Thanks to these features, they have been applied in a diverse range of areas, including biosensors and biocatalysis. To highlight the progress of research on organic-inorganic hybrid nanoflowers, this review discusses their synthetic methods and mechanisms, structural and biological characteristics, as well as recent representative applications. Current challenges and future directions toward the design and development of multi-functional nanoflowers for their widespread utilization in biotechnology are also discussed.
关键词: Organic-inorganic hybrid nanoflowers,Coordination interaction,Biosensor,Enzyme immobilization,Biocatalysis
更新于2025-09-04 15:30:14
-
A Wideband Reconfigurable Folded Planar Dipole using MEMS and Hybrid Polymeric Substrates
摘要: A wideband reconfigurable folded planar dipole using hybrid polymeric substrates is proposed. Artificial Magnetic Conductor (AMC) is a periodic structure composed of rectangular patches integrated with Jerusalem Cross (JSC) slots and being located in between two substrates. The Perfect Magnetic Conductor (PMC)-like behaviour of the AMC structure enabled the printed folded dipole to be placed near to the proposed structure, resulting in a low-profile antenna with 5.11 dB gain operating at 9.41 GHz. The combined use of the polymeric substrate and the proposed AMC resulted in a 1 GHz of bandwidth. The proposed antenna is capable in beam steering on the xz-plane via the integration of radio frequency (RF) MEMS switches placed on the antenna feeding transmission line. Simulations and measurements show a satisfactory agreement, with a beam steering capability at least 30 degrees, bandwidth of 1 GHz and maximum gain of 5.11 dB.
关键词: reconfigurable,RF MEMS,hybrid polymeric,Wideband
更新于2025-09-04 15:30:14
-
Electron/Energy Transfer Studies on Hybrid Materials Based on Dinuclear Coordination Compounds of Twisted Perylene Diimide
摘要: To understand the influence of transition metal ion coordination on the properties and performance of the triads, the symmetric bridging ligand, 1,10-phenanthroline-perylene diimide-1,10-phenanthroline, 1,10-Phen-PDI-1,10-Phen (1) comprising four electron-donating 4-methoxyphenoxy bulky groups at bay-positions and its corresponding square-planar coordination compounds with dichloroplatinum(II), [{PtCl2}2-1] (2) and palladium(II) [{PdCl2}2-1] (3) were prepared in order to tune the photochemical and optical properties of these hybrid materials. These triads show strong electronic absorption bands attributed to the PDI and M(II)(1,10-Phen)Cl2 moieties in DMSO. UV-Vis absorption spectra of compounds were calculated using Time-Dependent Density Functional Theory (TDDFT) for the ground state optimized structures in DCM. Current results indicate that 2 has the lowest HOMO-LUMO gap (2.29 eV in DCM) among the investigated molecules. The energy and charge transfer processes with tailoring molecular structures are one of the important strategies for the design of future functional triads based on donor and acceptor moieties for hybrids optoelectronic devices. Thus, we studied linear absorption, fluorescence, and ultrafast transient absorption spectra measurements for the triads in dichloromethane to investigate the impact of different functionalization strategies on the optical characteristics, photo-stability, and photo-induced charge-transfer (CT) processes. The observed ultrafast intramolecular charge transfer from donor units to acceptor part of 1, 2 and 3 is related to fluorescence quenching and faster singlet state decay on transient absorption measurements. The intramolecular charge transfer mechanism was also compared with the unsymmetrical counterparts that were investigated previously. Symmetrical compounds exhibit faster charge transfer in comparison with the unsymmetrical compounds.
关键词: density functional theory,coordination compounds,ultrafast pump-probe,Perylene diimide,hybrid materials
更新于2025-09-04 15:30:14
-
Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies
摘要: As a combination of solar cell and water-based triboelectric nanogenerator (TENG), new concept of a solar-cell-based hybrid energy harvester has been proposed. However, previous studies have not fully considered the degradation of optical characteristics due to water-based TENG and energy loss due to an ineffective electrical connection between solar cell and water-based TENG. The 1% degradation in light transmittance by applying the water-based TENG on its outermost part results in more than 1 mW/cm2 output power loss in a solar cell, which cannot be recovered by the instantaneous electrical energy output of water-based TENG. Herein, we report a moth’s eye mimicking TENG (MM-TENG), which can play a role of complementary energy harvester to a conventional solar cell due to its superior specular transmittance (maximum of 91% for visible light). For the first time, we deeply analyze the optical effect of the MM-TENG on a solar cell by investigating solar-weighted transmittance (SWT). The 0.01% improved SWT in the MM-TENG increases the fill factor and power conversion efficiency of solar cell by 0.5% and 0.17%, respectively, compared with a conventional protective glass plate which is always applied in a solar panel. In addition to such prominent high transmittance, the self-cleaning property of the MM-TENG enables the long-term performance of the solar panel. And particularly, this paper reports a novel electric circuit for effective management in a hybrid energy harvester by intermittently transferring the stabilized electrical energy output of the MM-TENG. This work, which addresses issues for the practical utilization of the water-based TENG as a complementary energy harvester to solar cell, would move the water-based TENG one step closer to its practical utilization by resolving critical concerns.
关键词: hybrid energy harvester,property,waterbased,self-cleaning,moth's eye mimicking structure,switching circuit,triboelectric nanogenerator
更新于2025-09-04 15:30:14
-
Crystal growth, structural phase transitions and optical gap evolution of CH3NH3Pb(Br1-xClx)3 powders
摘要: Chemically tuned inorganic-organic hybrid halide perovskites based on bromide and chloride anions CH3NH3Pb(Br1-xClx)3 have been crystallized and investigated by synchrotron X-ray diffraction (SXRD), scanning electron microscopy and UV-vis spectroscopy. CH3NH3PbBr3 and CH3NH3PbCl3 experience successive phase transitions upon cooling, which are suppressed for intermediate compositions probably due to compositional disorder. For CH3NH3PbCl3 a transient phase, formerly described as tetragonal, was identified at 167.5 K; the analysis of SXRD data demonstrated that it is indeed orthorhombic, with space group Pnma, and a ≈ √2ap; b ≈ 2ap; c ≈ √2ap (ap is the ideal cubic perovskite unit-cell parameter). The band gap engineering brought about by the chemical management of CH3NH3Pb(Br1-xClx)3 perovskites can be controllably tuned: the gap progressively increases with the concentration of Cl ions from 2.2 to 2.9 eV, and shows a concomitant variation with the unit-cell parameters of the cubic phases at 295 K. This study provides an improved understanding of the structural and optical properties of the mixed CH3NH3Pb(Br1-xClx)3 perovskites.
关键词: hybrid perovskite,mixed halide,chlorine,bromine,solar cells
更新于2025-09-04 15:30:14
-
Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics
摘要: Hybrid (organic-inorganic) materials have emerged as a promising class of thermoelectric materials, achieving power factors (S2σ) exceeding those of either constituent. The mechanism of this enhancement is still under debate, and pinpointing the underlying physics has proven dif?cult. In this work, we combine transport measurements with theoretical simulations and ?rst principles calculations on a prototypical PEDOT:PSS-Te(Cux) nanowire hybrid material system to understand the effect of templating and charge redistribution on the thermoelectric performance. Further, we apply the recently developed Kang-Snyder charge transport model to show that scattering of holes in the hybrid system, de?ned by the energy-dependent scattering parameter, remains the same as in the host polymer matrix; performance is instead dictated by polymer morphology manifested in an energy-independent transport coef?cient. We build upon this language to explain thermoelectric behavior in a variety of PEDOT and P3HT based hybrids acting as a guide for future work in multiphase materials.
关键词: polymer morphology,charge transport,PEDOT:PSS,thermoelectric materials,hybrid materials
更新于2025-09-04 15:30:14
-
Performance Analysis of Hybrid RF/FSO System using BPSK-SIM and DPSK-SIM over Gamma-Gamma Turbulence Channel with Pointing errors for Smart City Applications
摘要: The in wireless communication -Free space optics (FSO) offers lots of merits over radio frequency (RF) links due to its license free bandwidth, ease of installation, high security features, and viable cost for short distance communication. It's high speed data rate and immunity against Electromagnetic Interference (EMI) makes FSO the emerging technology of today. But, FSO is not always reliable especially during Atmospheric conditions like fog, rain, mist and snow. Hence, in account a new technique of Hybrid FSO/RF, this includes advantages of both FSO and RF technologies. Through this paper intend to perform an extensive analysis of the error and misalignment effects encountered in Line Of Sight (LOS) communication. Pointing error and turbulence effects are the main drawback parameters for our analysis. For this purpose I have taken into consideration different modulation techniques-Binary Phase Shift keying-Subcarrier Intensity Modulation (BPSK-SIM), Differential Phase Shift Keying- Subcarrier Intensity Modulation (DPSK-SIM) communication system with reference to OOK Modulation. The novel expressions for outage probability and BER for both FSO and RF system are derived which uses Rician Channel and 16QAM Modulation scheme alongside Hybrid FSO/RF system for weak, moderate, strong turbulence regimes using Meijer-G Function.
关键词: Free space optics,Hybrid RF/FSO,Gamma-Gamma Channel,Atmospheric turbulence
更新于2025-09-04 15:30:14
-
[Institution of Engineering and Technology 12th European Conference on Antennas and Propagation (EuCAP 2018) - London, UK (9-13 April 2018)] 12th European Conference on Antennas and Propagation (EuCAP 2018) - Computer Tool for Simulating Frequency Modulated -Continuous Wave Radar Systems in Urban Traffic Scenes
摘要: In this work, a computer tool for the simulation of the responses of Frequency Modulated-Continuous Wave radar systems in Urban Traffic Scenes is presented. The radar echoes including frequency shifts due to distance and object speeds are computed using a new hybrid technique that combines Method of Moments, Physical Optics and Geometrical Theory of Diffraction. Arbitrarily time-shaped radar sequences can be set for obtaining output parameters like Doppler Spectrum, beat signals in frequency and time domains, distances and speeds of echoes, etc. The technique is efficient and accurate for solving the electrically large and multiscale problem that appears in the simulation of these systems in urban complex scenarios. Representative results are presented.
关键词: method of moments,FM-CW radar,hybrid methods,physical optics,geometrical theory of diffraction,anticolision,propagation,antenna,radar
更新于2025-09-04 15:30:14
-
Design and Provision of Traffic Grooming for Optical Wireless Data Center Networks
摘要: Traditional wired data center networks (DCNs) suffer from cabling complexity, lack flexibility, and are limited by the speed of digital switches. In this paper, we alternatively develop a top-down traffic grooming (TG) approach to the design and provisioning of mission-critical optical wireless DCNs. While switches are modeled as hybrid optoelectronic cross-connects, links are modeled as wavelength division multiplexing (WDM) capable free-space optic (FSO) channels. Using the standard TG terminology, we formulate the optimal mixed-integer TG problem considering the virtual topology, flow conversation, connection topology, non-bifurcation, and capacity constraints. Thereafter, we develop a fast yet efficient sub-optimal solution which grooms mice flows (MFs) and mission-critical flows (CFs) and forward on predetermined rack-to-rack (R2R) lightpaths. On the other hand, elephant flows (EFs) are forwarded over dedicated server-to-server (S2S) express lightpaths whose routes and capacity are dynamically determined based on the availability of wavelength and capacity. To prioritize the CFs, we consider low and high priority queues and analyze the delay characteristics such as waiting times, maximum hop counts, and blocking probability. As a result of grooming the sub-wavelength traffic and adjusting the wavelength capacities, numerical results show that the proposed solutions can achieve significant performance enhancement by utilizing the bandwidth more efficiently, completing the flows faster than delay sensitivity requirements, and avoiding the traffic congestion by treating EFs and MFs separately.
关键词: intensity allocation,delay analysis,lightpath provisioning,mission-critical data centers,wavelength assignment,hybrid cross-connect,Wavelength routing,blocking probability analysis
更新于2025-09-04 15:30:14
-
Prediction of Adsorption Probability of Oxidizing and Reducing Species on 2D Hybrid Junction of rGO-ZnO from First Principle Analysis
摘要: The target of this paper is to theoretically investigate the probability of gas (both oxidizing and reducing) adsorption on the van der Waals (vdW) heterojunction formed between p-type rGO and n-type 2D-ZnO, using density functional theory (DFT) based first principle calculation employing Virtual Nanolab (VNL) Atomistix Toolkit (ATK) (v2016.4). Two types of heterostructures are considered viz. heterostructure type-1 where hydroxyl group (sp2) is at the edge of the reduced graphene oxide (rGO) and heterostructure type-2 where hydroxyl group (sp3) is perpendicular to the plane of rGO. Adsorption energy, charge transfer and the distance of the nearest atom from the adsorbent are calculated for oxidizing (NO2 as the test case) and reducing (NH3 as the test case) species and compared with that of Oxygen on rGO/2D-ZnO heterostructures as well as on its individual constituent (rGO nanoflakes and 2D-ZnO, separately). Like 2D-ZnO, heterostructure type-1 was also found to be selective towards NO2 with almost three times and five times higher adsorption energy than that of 2D-ZnO and rGO, respectively. On the other hand, it was found that charge distribution in the underlying 2D-ZnO of heterostructure type-2 remained almost unaltered even after gas adsorption and therefore lead to insignificant improvement compared to its 2D-ZnO counterpart.
关键词: gas adsorption probability,charge transfer,van der Waals heterostructure,Density functional theory,rGO-ZnO hybrid system
更新于2025-09-04 15:30:14