修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

14 条数据
?? 中文(中国)
  • Preparation of Nb2O5-decorated hierarchical porous ZnO microspheres with enhanced photocatalytic degradation of palm oil mill effluent

    摘要: In the present work, Nb2O5-decorated hierarchical porous ZnO microspheres (ZnO/Nb2O5) were successfully prepared through a facile surfactant-free method. The as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy and Brunauer–Emmett–Teller surface area analyses. Under UV light irradiation, the ZnO/Nb2O5 composites degraded palm oil mill effluent (POME) efficiently and demonstrated much higher photocatalytic activity compared to those of pure ZnO and Nb2O5. The enhanced photocatalytic degradation performance of ZnO/Nb2O5 composites was attributed to the high charge separation efficiency and hydroxyl radical generation ability as verified by the photoluminescence spectra. Phytotoxicity test upon the POME degradation over ZnO/Nb2O5 photocatalysis considerably decreased through the measurement of radicle lengths of Vigna radiata. Moreover, the ZnO/Nb2O5 composites were reused several times without appreciable loss of activity. This work revealed that the as-prepared ZnO/Nb2O5 composites have great potential for practical applications in the field of wastewater treatment.

    关键词: Nb2O5-decorated hierarchical porous ZnO microspheres,Photocatalytic degradation,Charge separation efficiency,Palm oil mill effluent,Hydroxyl radical generation

    更新于2025-09-10 09:29:36

  • Ionic Radii and Concentration Dependency of RE <sup>3+</sup> (Eu <sup>3+</sup> , Nd <sup>3+</sup> , Pr <sup>3+</sup> and La <sup>3+</sup> ) Doped Cerium Oxide Nanoparticles for Enhanced Multi-Enzyme Mimetic and Hydroxyl Radical Scavenging Activity

    摘要: The anti-oxidant activity of cerium oxide nanoparticles (CNPs) depends on the concentration of oxygen vacancies and Ce3+ active sites. In the present work, we report the impact of 5 mol% tri-valent rare earth doped (RE3+ = Eu3+, Nd3+, Pr3+ and La3+) CNPs on the oxidation state modulation and anti-oxidant property with respect to ionic radii. An increase in lattice parameter, strain and oxygen vacancy concentration was observed as a function of ionic radii. Among the various dopants in CNP, La3+ with higher ionic radii having smaller crystallite size (7.9 nm) and higher vacancy displayed better peroxidase, oxidase and hydroxyl radical (HO?) scavenging activity. The kinetic parameters for the peroxidase and oxidase activity was found to be superior with Km = 0.217 mM and 0.261 mM, respectively, for 5 mol% La3+ doped CNPs. In order to divulge the role of dopants concentration on structural properties, we also explored using 10 and 20 mol% La3+ doping in CNP. Due to smaller crystallite size (6.7 nm) and higher defect level (3.12 x 1021 cm-3), 20% La3+ doping showed superior peroxidase and oxidase activity as shown by the low Km values. CNPs exhibit both peroxidase and oxidase activity in a concentration dependent manner. Moreover, CNPs exhibit a concentration dependent peroxidase and oxidase activity that can be selectively activated for various theranostic applications. Thus, our results demonstrate the crucial role of ionic radii and concentration of RE3+ dopants on the defect formation in cerium oxide nanoparticles for improved anti-oxidant properties of ceria.

    关键词: ionic radii,RE3+ doping,oxygen vacancies,peroxidase activity,oxidase activity,hydroxyl radical scavenging,cerium oxide nanoparticles,anti-oxidant properties

    更新于2025-09-04 15:30:14

  • Improvement of the Degradation of Methyl Orange Using a TiO2/BDD Composite Electrode to Promote Electrochemical and Photoelectro-Oxidation Processes

    摘要: Electrophoretic deposit of titanium dioxide (TiO2) was carried out over a boron doped diamond plate of 2 cm2, annealing at 350 °C to produce binary TiO2/BDD composite electrode. The composite was characterized by scanning electron microscopy (SEM) and linear sweep voltammetry (LSV) response. N,N-dimethyl-p-nitrosoaniline (RNO) was used as a probe molecule for the detection of free radicals (?OH) during the oxidation of water in phosphate buffer (pH 4) solution; at the TiO2/BDD/hv composite, an apparent first-rate kinetic constant of kobs = 0.1314 min-1 was observed. Afterwards, the composite electrode was applied to degrade 40 and 100 mg L-1 of a typical azo dye methyl orange (MO) via electrochemical process, such as: electro-oxidation (EO) and photoelectro-oxidation (PEO) under 25, 75 and 125 mA cm-2 current density (j); the PEO tests were performed using a UVA lamp at 365 nm. Results showed that the discoloration in the PEO process was larger than in the EO process, 96 and 100 %, respectively. Chemical Oxygen Demand (COD) was tested to evaluate the degradation. Hydroxylated derivatives were identified by means of mass spectroscopy during the PEO of MO in a TiO2/BDD/hv composite electrode.

    关键词: TiO2/BDD composite,electrochemical process,hydroxyl radical formation,azo dye,water treatment

    更新于2025-09-04 15:30:14

  • Advanced oxidation of formaldehyde in aqueous solution using the chemical-less UVC/VUV process: Kinetics and mechanism evaluation

    摘要: This study was conducted to evaluate the degradation of high concentrations of formaldehyde in the chemical-less UVC/VUV photo-reactor. 99.5% degradation and 94% chemical oxygen demand (COD) removal of 200 mg/L formaldehyde was achieved in the UVC/VUV photo-reactor at reaction time of 60 min and solution pH of 7. The effect of water anions such as carbonate, bicarbonate, nitrate, chloride, sulfate and phosphate was examined on degradation and COD removal of formaldehyde; nitrate and carbonate exhibited the highest inhibitory effects on the process. Besides, treatment of formaldehyde-contaminated tap water was also investigated and formaldehyde removal was decreased from 99.5% is aqueous solution to 86.2% in tap water. The findings of radical scavenging tests revealed that hydroxyl radical was the most predominant oxidizing agent contributed in degradation of formaldehyde. It is concluded therefore that the UVC/VUV process as a unique chemical-less process efficient for advanced degradation of high concentrations of formaldehyde.

    关键词: Hydroxyl radical,COD removal,Vacuum UV,Formaldehyde degradation,Advanced photo-oxidation

    更新于2025-09-04 15:30:14