- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - High-Efficiency InAs-InGaAs Quantum Dash Solar Cells Developed Through Current Constraint Engineering
摘要: In principle, quantum-dot intermediate band solar cell (QD-IBSC) operates at a higher current density than a III-V multijunction solar cell (MJSC). Due to this inherent property, heat management becomes important when it is operated under a high concentrated illumination. In this work, we propose one way to circumvent this issue, where a wide bandgap cell is placed on top of QD-IBSC, which acts as a current constraint cell, but instead leads to a higher VOC. We demonstrate a 32.1% efficiency under 225 suns with a bonded InGaP/GaAs widegap cell // InAs-InGaAs QDSC configuration.
关键词: wide bandgap cell,efficiency,VOC,III-V multijunction solar cell,concentrated illumination,quantum-dot intermediate band solar cell,MJSC,QD-IBSC,current constraint cell,heat management
更新于2025-09-19 17:13:59
-
[IEEE 2019 European Space Power Conference (ESPC) - Juan-les-Pins, France (2019.9.30-2019.10.4)] 2019 European Space Power Conference (ESPC) - Space III-V Multijunction Solar Cells on Ge/Si virtual substrates
摘要: Virtual substrates based on thin Ge layers on Si substrates by direct deposition have recently achieved high quality. In this work, their application as low cost, removable substrates for the growth of high efficiency, lightweight and flexible multijunction solar cells for space applications is analyzed. Experimental Ge single-junction solar cells and GaInP/Ga(In)As/Ge triple-junction solar cells using the Ge/Si virtual substrate as an active bottom junction (being the Si inactive), are implemented using medium quality Ge/Si virtual substrates with a 5 μm Ge layer thickness. A lower quality in the Ge material, as compared to standard substrates, but enough carrier collection efficiency for a standard triple-junction, are shown. The expected formation of cracks during growth, due to the large thermal expansion coefficient mismatch with the Si substrate, is confirmed, and is found to be a major limiting factor for the performance of the solar cells. Strategies such as thinning the Ge + III-V structure and minimizing the thermal cycling during growth are discussed. Using an embedded porous Si layer to serve as buffer for the strain is being investigated. This porous layer could also serve as sacrificial layer for high throughput mechanical epitaxial lift-off in the manufacturing of lightweight and flexible multijunction cells. These embedded porous Si layers need to be engineered for optimum performance and compatibility with the Ge and III-V deposition processes.
关键词: lightweight solar cell,III-V multijunction solar cell,porous silicon,virtual substrate
更新于2025-09-12 10:27:22