- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Intravascular Photothermal Strain Imaging for Lipid Detection
摘要: Cardiovascular disease (CVD) is one of the major threats to humanity, accounting for one-third of the world’s deaths. For patients with high-risk CVD, plaque rupture can lead to critical condition. It is therefore important to determine the stability of the plaque and classify the patient’s risk level. Lipid content is an important determinant of plaque stability. However, conventional intravascular imaging methods have limitations in ?nding lipids. Therefore, new intravascular imaging techniques for plaque risk assessment are urgently needed. In this study, a novel photothermal strain imaging (pTSI) was applied to an intravascular imaging system for detecting lipids in plaques. As a combination of thermal strain imaging and laser-induced heating, pTSI differentiates lipids from other tissues based on changes in ultrasound (US) velocity with temperature change. We designed an optical pathway to an intravascular ultrasound catheter to deliver 1210-nm laser and US simultaneously. To establish the feasibility of the intravascular pTSI system, we experimented with a tissue-mimicking phantom made of fat and gelatin. Due to the difference in the strain during laser heating, we can clearly distinguish fat and gelatin in the phantom. The result demonstrates that pTSI could be used with conventional intravascular imaging methods to detect the plaque lipid.
关键词: photothermal strain imaging,intravascular ultrasound (IVUS),thermal strain imaging,lipid detection,unstable plaque,intravascular imaging,cardiovascular disease
更新于2025-09-23 15:21:01
-
Intravascular Molecular Imaging to Detect High-Risk Vulnerable Plaques: Current Knowledge and Future Perspectives
摘要: Purpose of Review To describe vulnerable plaque pathobiology and summarize potential targets for molecular imaging with a focus on intravascular near-infrared fluorescence (NIRF) and its translatable applications. Recent Findings Structural imaging alone is unable to precisely identify high-risk plaques in patients with coronary artery disease (CAD). Intravascular near-infrared fluorescence (NIRF) imaging is an emerging translational approach that can image specific in vivo molecular processes and cells that characterize vulnerable plaques. High-priority NIRF targets imaged by intravascular NIRF imaging thus far include macrophages, cathepsin protease activity, oxidized low-density lipoprotein (oxLDL), and abnormal endothelial permeability. The newest generation of NIRF catheters is multimodal in nature and combines NIRF with either IVUS or OCT, providing simultaneous co-registered morphological and pathobiological assessment of atherosclerotic plaques. While most intravascular NIRF studies have been performed in a preclinical environment, a first-in-human NIR autofluorescence-OCT trial has recently been performed. These developments suggest that clinical intravascular NIRF molecular imaging will be available within the next 3 years. Summary Molecular imaging is a powerful approach to enhance our understanding of atherosclerosis pathophysiology. Intravascular NIRF/OCT and NIRF/IVUS molecular imaging is nearing its use in atherosclerosis patients and will initially leverage indocyanine green (ICG) as an FDA-approved NIRF agent that reports on abnormal plaque permeability. Clinical trials are needed to assess the value of intravascular NIRF imaging using ICG as well as other novel NIRF imaging agents to better understand vulnerable plaque pathobiology, event prediction, and to enable personalized pharmacotherapy of high-risk plaques and patients.
关键词: Molecular imaging,Vulnerable plaque,Near-infrared spectroscopy,OCT,Atherosclerosis,Near-infrared fluorescence,IVUS
更新于2025-09-19 17:13:59
-
In-Vitro Detection of Small Isolated Cartilage Defects: Intravascular Ultrasound Vs. Optical Coherence Tomography
摘要: This experimental work focused on the sensor selection for the development of a needle-like instrument to treat small isolated cartilage defects with hydrogels. The aim was to identify the most accurate and sensitive imaging method to determine the location and size of defects compared to a gold standard (lCT). Only intravascular ultrasound imaging (IVUS) vs. optical coherent tomography (OCT) were looked at, as they fulfilled the criteria for integration in the needle design. An in-vitro study was conducted on six human cadaveric tali that were dissected and submerged in saline. To simulate the natural appearance of cartilage defects, three types of defects were created via a standardised protocol: osteochondral defects (OCD), chondral defects (CD) and cartilage surface fibrillation (CSF), all sized between 0.1 and 3 mm in diameter. The detection rate by two observers for all diameters of OCD were 80, 92 and 100% with IVUS, OCT and lCT, for CD these were 60, 83 and 97%, and for CSF 0, 29 and 24%. Both IVUS and OCT can detect the presence of OCD and CD accurately if they are larger than 2 mm in diameter, and OCT can detect fibrillated cartilage defects larger than 3 mm in diameter. A significant difference between OCT–lCT and IVUS–lCT was found for the diameter error (p = 0.004) and insertion depth error (p = 0.002), indicating that OCT gives values closer to reference lCT. The OCT imaging technique is more sensitive to various types and sizes of defects and has a smaller diameter, and is therefore preferred for the intended application.
关键词: (Osteo)chondral defects,Catheter imaging,Needle intervention,OCT,IVUS,Orthopedics
更新于2025-09-04 15:30:14