修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Preparation of graphene oxide with large lateral size and graphene/polyimide hybrid film via in situ “molecular welding” strategy

    摘要: In this letter, we report an "ultrasonication-free" direct exfoliation method to obtain graphene oxide with large lateral size (LGO). The average size of LGO sheets is about 50 lm * 50 lm. The g-LGO film shows a superior in-plane thermal conductivity after the graphitization treatment. Furthermore, the in situ "molecular welding", using polyimide (PI) to weld up the GO sheets, is conducted to improve the performance of hybrid thermal conducting film. The thermal conductivity of g-LGO/PI film is 1053.975 ± 8.762 W m-1 K-1, superior to that of the g-LGO film and g-SGO/PI. The direct preparation method to obtain GO with large lateral size, followed by such an in situ "molecular welding" strategy by PI, provides a promising way to fabricate graphene-based film for efficient thermal management.

    关键词: Molecular welding,In situ polymerization,Large lateral size,Thermal properties,Carbon material

    更新于2025-09-23 15:23:52

  • Interface Modulation of Core-Shell Structured BaTiO3@polyaniline for Novel Dielectric Materials from Its Nanocomposite with Polyarylene Ether Nitrile

    摘要: The core-shell structured polyaniline-functionalized-BaTiO3 (BT@PANI) nanoparticles with controllable shell layer thicknesses are developed via in-situ aniline polymerization technology and characterized in detail. The results prove that the PANI shell layer with the adjustable and controllable thicknesses of 3–10 nm are completely stabilized on the surface of the BaTiO3 core. In addition, the BT@PANI nanoparticles are regarded as the hybrid nanofillers to prepare PEN/BT@PANI nanocomposite films with a PEN matrix. The research results indicate that the surface functionalized nanoparticles facilitate the compatibility and dispersibility of them in the PEN matrix, which improves the properties of the PEN/BT@PANI nanocomposites. Specifically, the PEN/BT@PANI nanocomposites exhibit thermal stability, excellent permittivity-frequency, and dielectric properties-temperature stability. Most importantly, the energy density of nanocomposites is maintained at over 70% at 180 °C compared with that at 25 °C. All these results reveal that a new way to prepare the high-performance PEN-based nanocomposites is established to fabricate an energy storage component in a high temperature environment.

    关键词: dielectric properties,in-situ polymerization,nanoparticles,nanocomposites

    更新于2025-09-23 15:22:29