- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells
摘要: We report on a simple and efficient process to enhance the performance of perovskite solar cells by using ITO electrodes with a nanoporous surface formed by wet-etching of self-agglomerated Ag nanoparticles. Effective removal of the Ag nanoparticles embedded in the surface of the ITO electrodes result in a nanoporous structure without changing the ITO's sheet resistance (10.17 Ω/square) and optical transmittance (89.08%) at a 550 nm wavelength. Examinations with a scanning electron microscope, a transmission electron microscope, and two-dimensional porous mapping show that the nanoporous ITO surface has an increased contact area with the electron transport layer, which enhanced the carrier extraction efficiency of the perovskite solar cells. Compare to perovskite solar cells fabricated on typical ITO with a flat surface morphology, the perovskite solar cells fabricated on the nanoporous-surface ITO show a higher fill factor of 81.1% and a power conversion efficiency of 20.1%. These results indicate that modified ITO surfaces with nano-scale porosity provide a simple and efficient method to improve the power conversion efficiency of perovskite solar cells without a complicated process.
关键词: Contact area,Nanoporous surface,Sn-doped In2O3,Ag agglomeration,Perovskite solar cells
更新于2025-11-21 10:59:37
-
P‐type Sb‐doped Cu <sub/>2</sub> O Hole Injection Layer Integrated on Transparent ITO Electrode for Acidic PEDOT:PSS‐Free Quantum Dot Light Emitting Diodes
摘要: It is developed that transparent p-type Sb-doped cuprous oxide (ACO) integrated Sn-doped In2O3 (ITO) film as hole injection layer (HIL) and anode combined electrodes for quantum dot light emitting diodes (QD-LEDs) to substitute acidic PEDOT:PSS HIL based electrode. By graded co-sputtering of ACO and ITO targets, the graded p-type ACO buffer layer can be integrated on the surface region of the ITO electrodes. P-type conductivity of the ACO film for acting as effective HIL in QD-LEDs is confirmed by a positive Hall coefficient (1.74 (cid:1) 10 (cid:3)1). Due to the well-matched work function of p-type ACO on the ITO electrodes, the acidic PEDOT:PSS-free QD-LEDs exhibited typical current-voltage-luminescence of QD-LEDs. The successful operation of PEDOT:PSS-free QD-LED with p-type ACO integrated ITO electrode indicates that ACO and ITO anode graded sputtering is simpler fabrication steps for cost-effective QD-LEDs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable QD-LEDs.
关键词: Sn-doped In2O3,acidic PEDOT:PSS,hole injection layer,p-type conductivity,Sb-doped Cu2O,quantum dots light emitting diodes
更新于2025-11-21 10:59:37
-
Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites
摘要: In this work, special triethylamine (TEA) gas sensors based on Pd nanoparticles (NPs)-decorated In2O3 microstructures with different Pd amount have been successfully fabricated. The optimal sensor based on 3 wt% Pd-loaded In2O3 shows higher gas response compared with other content of Pd wt% and exhibits the highest response of 47.56 when exposed to 50 ppm TEA gas. Furthermore, 3 wt% Pd NPs-In2O3 sensor not only possesses superior response and recovery properties of 4 s and 17 s under 50 ppm TEA gas, respectively, but also displays outstanding selectivity to TEA gas at the existence of other interfering gases. Based on the model of depletion layer, the possible gas sensing mechanism are studied and the results show that, the synergistic effect between the sensitization exerted by Pd nanoparticles and structural defects may be responsible for the remarkably enhanced TEA sensing performance. Considering the superiority including low cost, simple structure, and facile fabrication, 3 wt% Pd NPs-In2O3 microstructures are promising for high-performance TEA sensing applications.
关键词: Triethylamine,In2O3,Gas sensors
更新于2025-11-14 17:04:02
-
ZnO-enhanced In2O3-based sensors for n-butanol gas
摘要: A series of high-response and fast-response/recovery n-butanol gas sensors was fabricated by adding ZnO to In2O3 in varying molar ratios to form ZnO-In2O3 nanocomposites via a facile co-precipitation hydrothermal method. Morphological characterizations revealed that the shape of pure In2O3 was changed from irregular cubes into irregular nanoparticles, 30-50 nm in size, with the addition of ZnO. Compared with the pure In2O3 gas sensor, the ZnO-In2O3 gas sensor exhibits superior n-butanol sensing performance. With the introduction of ZnO, the response of the sensor to n-butanol was improved from 17 to 99.5 at 180 °C for a [Zn]:[In] molar ratio of 1:1. In addition, the ZnO-In2O3 gas sensors show a reduced optimal working temperature, excellent selectivity to n-butanol, and good repeatability. The response of the ZnO-enhanced In2O3-based sensors showed a strong linear relationship with the n-butanol gas concentration, allowing for the quantitative detection of n-butanol gas.
关键词: ZnO-In2O3,n-Butanol,Gas-sensing property,Selectivity
更新于2025-09-23 15:23:52
-
Modulating Electrical Performances of In <sub/>2</sub> O <sub/>3</sub> Nanofiber Channel Thin Film Transistors via Sr Doping
摘要: Although In2O3 nanofibers (NFs) are considered as one of the fundamental building blocks for future electronics, the further development of these NFs devices is still seriously hindered by the large leakage current, low on/off current ratio (Ion/Ioff), and large negative threshold voltage (VTH) due to the excess carriers existed in the NFs. A simple one-step electrospinning process is employed here to effectively control the carrier concentration of In2O3 NFs by selectively doping strontium (Sr) element to improve their electrical device performance. The optimal devices (3.6 mol% Sr doping concentration) can yield the high field-effect mobility (μfe ≈ 3.67 cm2 V?1 s?1), superior Ion/Ioff ratio (≈108), and operation in the energy-efficient enhancement-mode. High-κ Al2O3 thin films can also be employed as the gate dielectric to give the gate voltage greatly reduced by 10× (from 40 to 4 V) and the μfe substantially increased by 4.8× (to 17.2 cm2 V?1 s?1). The electrospun E-mode Sr-In2O3 NF field-effect transistors (NFFETs) can as well be integrated into full swing of inverters with excellent performances, further elucidating the significant advance of this electrospinning technique toward practical applications for future low-cost, energy-efficient, large-scale, and high-performance electronics.
关键词: enhancement mode,Sr element,high performance,In2O3 nanofiber,inverter
更新于2025-09-23 15:23:52
-
Understanding the Sensing Mechanism of Rh2O3 loaded In2O3
摘要: The effect of Rh loading on CO sensing was studied for the case of In2O3. This was done by performing measurements with sensors based on loaded and unloaded materials that were performed at an operation temperature of 300 °C in the presence of low background oxygen concentration according to an experimental procedure that was demonstrated to help clarify the reception/transduction functions of loaded Semiconducting Metal Oxides (SMOX). The experimental investigation methods were DC resistance and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that in the case of Rh2O3 loaded In2O3 the reaction primary takes place on the Rh2O3 cluster and the electrical properties of the In2O3 are controlled by the pinning of the SMOX Fermi-level to the one of the Rh2O3 cluster.
关键词: SMOX,surface chemistry,gas sensors,operando,Rh2O3 loading,DRIFTS,In2O3
更新于2025-09-23 15:23:52
-
Ultrafast methanol sensing properties of nano-spindle like In2O3 hierarchical structures with oxygen vacancies
摘要: Unique nano-spindle like In2O3 hierarchical structures have been successfully prepared using a simplified solvothermal method. The micromorphology and crystalline structure of the as-obtained are characterized by SEM, TEM, and XRD. Morphology analysis reveals that the nano-spindle like In2O3 hierarchical structures are composed of numerous ordered nanorods. The optical properties of the samples are also studied, and it is confirmed that the presence of a large amount of oxygen vacancies in the as-synthesized samples. The as-synthesized nano-spindle like In2O3 hierarchical structures are used for the detection of the methanol gas. The sensing properties of the as-manufactured sensor are carefully discussed and the sensor shows outstanding methanol sensing performance, especially ultrafast response time (<1 s). The sensing mechanism is also discussed. This work offers the possibility to manufacture low-cost, high-performance methanol sensor based on the as-synthesized nano-spindle like In2O3 hierarchical structures.
关键词: Oxygen vacancies,Methanol sensing performance,Hierarchical structures,Nano-spindle like In2O3
更新于2025-09-23 15:22:29
-
Microwave Hydrothermal Synthesis of In <sub/>2</sub> O <sub/>3</sub> -ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties
摘要: Indium oxide (In2O3) doped zinc oxide (ZnO) nanocomposites were successfully synthesized through a facile microwave hydrothermal method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms (BET) and UV-Vis diffuse reflectance spectroscopy. The morphology of In2O3-ZnO composites was observed to be like flowers, and the diameter of particles constituting the porous petal was about 30 nm. The photoelectrocatalytic test results showed that the photoelectrocatalytic methylene blue (MB) degradation efficiency using In2O3-ZnO nanocomposites as photocatalysts under visible light irradiation and a certain voltage could reached above 95.3% after 60 min, much higher than that of In2O3 particles and ZnO particles. The enhanced photoelectrocatalytic activity was attributed to the doping of In2O3 and applied voltage, which beneficially reduced the recombination of electrons and holes in the photoelectrocatalytic process, therefore, it promoted the production of active species (?OH and ?O2-).
关键词: photoelectrochemical properties,visible light irradiation,methylene blue degradation,In2O3-ZnO nanocomposites,microwave hydrothermal synthesis
更新于2025-09-23 15:22:29
-
H2 gas sensor based on PdOx-doped In2O3 nanoparticles synthesized by flame spray pyrolysis
摘要: In this work, 0–1.0 wt% PdOx-doped In2O3 nanoparticles were successfully synthesized by flame spray pyrolysis (FSP) in a single step for the first time and investigated for gas-sensing applications. The sensing films were fabricated by spin coating and tested towards hydrogen (H2) at various temperatures ranging from 150 to 350 °C in dry air. The powder and sensing film properties were analyzed by X-ray analyses, nitrogen adsorption and electron microscopy. The spherical and cubic In2O3 nanoparticles with diameters ranging from 2 to 20 nm were observed with no apparent secondary phase of Pd or PdOx. Detailed analyses suggested that Pd species might be in the form of PdOx crystallites embedded in and on grain boundaries of In2O3 nanoparticles. From gas-sensing measurements, hydrogen-sensing characteristics of In2O3 nanoparticles were significantly improved by PdOx doping particularly at the optimal Pd content of 0.50 wt%. The optimal PdOx-doped In2O3 sensing film showed a high response of 3526 towards 10,000 ppm H2 at the optimal working temperature of 250 °C. In addition, PdOx doped In2O3 sensing films displayed good stability and high H2 selectivity against various toxic and flammable gases including H2S, NO2, C2H4O, C2H4, C2H5OH and C2H2.
关键词: Flame spray pyrolysis,PdOx doped In2O3,H2 sensor,Semiconducting metal oxide
更新于2025-09-23 15:22:29
-
Synthesis of C-In2O3/BiOI composite and its enhanced photocatalytic degradation for methyl blue
摘要: In this work, C-In2O3/BiOI composite is synthesized and used as a high performance photocatalyst for photocatalytic degradation of methyl blue (MB) in wastewater. The C-In2O3/BiOI composites demonstrate 5 times higher photocatalytic performance than the pristine BiOI and In2O3 for MB degradation under the irradiation of visible light. Furthermore, the C-In2O3/BiOI composites have excellent cycling stability. Such enhanced photoactivity is due to the significantly enhanced separation efficiency of photogenerated. This work provides some significance in the design and construction of environmentally benign catalysts with excellent photocatalytic degradation of toxic pollutants.
关键词: C-In2O3/BiOI,Methyl blue,Photocatalysis,Visible light
更新于2025-09-23 15:22:29