- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Tuning Photoinduced Electron Transfer Efficiency of Fluorogenic BODIPY- <i>α</i> -Tocopherol Analogues
摘要: Fluorogenic analogues of α-tocopherol developed by our group have been instrumental in monitoring reactive oxygen species (ROS) within lipid membranes. Prepared as two-segment trap-reporter (chromanol-BODIPY) probes, photoinduced electron transfer (PeT) was utilized to provide these probes with an off/on switch mechanism warranting the necessary sensitivity. Herein we rationalize within the context of Marcus theory of electron transfer how substituents on the BODIPY core and linker length joining the trap and reporter segments, tune PeT efficiency. DFT and electrochemical studies were used to estimate the thermodynamic driving force of PeT in our constructs. By tuning the redox potential over a 400 mV range, we observed over an order of magnitude increase in PeT efficiency. Increasing the linker length between the chromanol and BODIPY by 2.8 angstroms in turn decreased PeT efficiency 2.7-fold. Our results illustrate how substituent and linker choice enable “darkening” the off state of fluorogenic probes based on BODIPY fluorophores, by favoring PeT over radiative emission from the singlet excited state manifold. Ultimately, our work brings light to the sensitivity ceiling one may achieve in developing fluorogenic antioxidants analogues of α-tocopherol. The work provides general guidelines applicable to those developing fluorogenic probes based on PeT.
关键词: electrochemical studies,α-tocopherol,lipid membranes,reactive oxygen species,redox potential,photoinduced electron transfer,Marcus theory,DFT,Fluorogenic analogues,BODIPY
更新于2025-09-09 09:28:46
-
Size and strain effects on mechanical and electronic properties of green phosphorene nanoribbons
摘要: Recently, a phosphorus isomer named green phosphorus was theoretically predicted with a similar interlayer interaction compared to that of black phosphorus, thus indicating that individual layers can be mechanically exfoliated to form two-dimensional (2D) layers known as green phosphorene. In this work, we investigated the properties of green phosphorene nanoribbons along both armchair and zigzag directions with ribbon widths up to 57 ? using density functional theory. Effects of ribbon width and strain on the mechanical and electronic properties of the ribbons were studied. The Young’s modulus, effect of quantum con?nement on the band gap, and effect of strain on the band structures of the ribbons were investigated. The green phosphorene ribbons were found to exhibit prominent anisotropic properties, with the Young’s modulus in the range of 10-35 GPa for the armchair green phosphorene nanoribbons (AGPNR) and 160-170 GPa for the zigzag green phosphorene nanoribbons (ZGPNR), which are the same order of magnitude as those of the 2D sheets. The work function was found to be between 5 eV ~ 5.7 eV for the range of widths studied. Both size and strain trigger direct-indirect band gap transitions in the ribbons and their transition mechanisms were discussed.
关键词: green phosphorene,mechanical properties,nanoribbons,electronic properties,density functional theory
更新于2025-09-09 09:28:46
-
Quantum behavior of hydrogen-vacancy complexes in diamond
摘要: Hydrogen plays an essential role in the growth process of artificial diamond and can easily form complexes with lattice vacancies. Despite substantial efforts to resolve the electronic structure and the ground-state properties of the hydrogen-vacancy (HV) center, the final remarks are ambiguous, while the complexes of vacancy with two and more hydrogen atoms remain unexplored. In this paper, we used spin-polarized, hybrid density-functional theory method to investigate electronic structure and magneto-optical properties of various hydrogen-vacancy clusters in diamond. Our theoretical results indicate a very strong tendency toward the formation of HnV complexes up to four hydrogen atoms that are mostly electrically and optically active centers. One of the investigated defects introduce highly correlated electronic states that pose a challenge for density-functional theory and, therefore, require special treatment when charge- and spin-density-related properties are determined. We introduced an extended Hubbard model Hamiltonian with fully ab initio provided parameters to analyze the complex electronic structure of highly correlated H2V0 defects. The role of quantum tunneling of hydrogen in HV center and its impact on the hyperfine structure was discussed. We demonstrate that experimentally observed HV1? center is similar to well-known NV1?, i.e., I) it possesses triplet 3A ground state and 3E excited state in C3v symmetry; II) the calculated zero-phonon line is 1.71 eV (1.945 eV for NV1?). A detailed experimental reinvestigation based on optically detected electron paramagnetic resonance spectroscopy is suggested to verify whether the HV1? center has metastable singlet shelving states between the ground and excited state triplets and, as a result, whether it may exhibit a spin-selective decay to the ground state.
关键词: quantum tunneling,diamond,hydrogen-vacancy complexes,magneto-optical properties,density-functional theory,quantum behavior
更新于2025-09-09 09:28:46
-
Face Recognition System Based on Spectral Graph Wavelet Theory
摘要: This study presents an efficient approach for automatic face recognition based on Spectral Graph Wavelet Theory (SGWT). SGWT is analogous to wavelet transform and the transform functions are defined on the vertices of a weighted graph. The given face image is decomposed by SGWT at first. The energies of obtained sub-bands are fused together and considered as feature vector for the corresponding image. The performance of proposed system is analyzed on ORL face database using nearest neighbor classifier. The face images used in this study has variations in pose, expression and facial details. The results indicate that the proposed system based on SGWT is better than wavelet transform and 94% recognition accuracy is achieved.
关键词: face recognition,spectral graph wavelet theory,Chebyshev polynomial,nearest neighbor classifier
更新于2025-09-09 09:28:46
-
Electronic states of dibenzo-p–dioxin. A synchrotron radiation linear dichroism Investigation
摘要: The UV absorbance bands of dibenzo-p-dioxin (dibenzo-1,4-dioxin, DD) are investigated by synchrotron radiation linear dichroism (SRLD) spectroscopy on molecular samples aligned in stretched polyethylene. The investigation covers the range 58000–30000 cm–1 (170–330 nm), thereby providing new information on the transitions of DD in the vacuum UV region. The observed polarization data enable experimental symmetry assignments of the observed transitions, leading to revision of previously published assignments by Ljubi? and Sablji? (J. Phys. Chem. A 109 (2005) 8209-8217). In general, the experimental spectra are well predicted by the results of quantum chemical calculations using time-dependent density functional theory (TD–DFT). The observed absorbance in the region 58000–55000 cm–1 (170–180 nm) in the vacuum UV is almost entirely short-axis polarized, in pleasing agreement with the predicted spectrum.
关键词: Dibenzo-p-dioxin,Near and vacuum UV,Stretched polyethylene,Polarization directions,Time-dependent density functional theory (TD-DFT),Synchrotron radiation,Linear dichroism (LD)
更新于2025-09-09 09:28:46
-
Surface enhanced Raman spectroscopy with methyl-orange on Ag-TiO2 nanocomposites: Experimental and theoretical investigation
摘要: Ag-TiO2 nanocomposites of different Ag nanoparticle (NP) concentrations are experimentally prepared and their UV-vis and surface enhanced Raman scattering characteristics are determined. The enhancement of the Raman signal for the ligand methyl-orange (MO) adsorbed onto the nanocomposite system, is observed. To investigate the influence of changing Ag concentration in this nanocomposite system, molecular dynamics (MD) simulations are conducted with both a fixed as well as varying number of the surfactant MO adsorbed onto the nanocomposite. Density functional theory (DFT) simulations are performed to investigate the conditions for charge transfer from the MO surfactant via the highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO) as well as the electrostatic potentials. It is shown that the bonding mode of the surfactant contributes greatly to the observed Raman scattering enhancement.
关键词: HOMO-LUMO,Surface Enhanced Raman Scattering,density functional theory,molecular dynamics,Ag-TiO2 nanocomposite,electrostatic potential
更新于2025-09-09 09:28:46
-
Dynamic cortical connectivity alterations associated with Alzheimer's disease: An EEG and fNIRS integration study
摘要: Emerging evidence indicates that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain network. Exploring alterations in the AD brain network is therefore of great importance for understanding and treating the disease. This study employs an integrative functional near-infrared spectroscopy (fNIRS) – electroencephalography (EEG) analysis approach to explore dynamic, regional alterations in the AD-linked brain network. FNIRS and EEG data were simultaneously recorded from 14 participants (8 healthy controls and 6 patients with mild AD) during a digit verbal span task (DVST). FNIRS-based spatial constraints were used as priors for EEG source localization. Graph-based indices were then calculated from the reconstructed EEG sources to assess regional differences between the groups. Results show that patients with mild AD revealed weaker and suppressed cortical connectivity in the high alpha band and in beta band to the orbitofrontal and parietal regions. AD-induced brain networks, compared to the networks of age-matched healthy controls, were mainly characterized by lower degree, clustering coefficient at the frontal pole and medial orbitofrontal across all frequency ranges. Additionally, the AD group also consistently showed higher index values for these graph-based indices at the superior temporal sulcus. These findings not only validate the feasibility of utilizing the proposed integrated EEG-fNIRS analysis to better understand the spatiotemporal dynamics of brain activity, but also contribute to the development of network-based approaches for understanding the mechanisms that underlie the progression of AD.
关键词: Alzheimer’s disease,Brain network,Functional near-infrared spectroscopy,Graph theory,EEG source imaging
更新于2025-09-09 09:28:46
-
Chemical inactivity of GaN(0001) surface – The role of oxygen adsorption – Ab initio picture
摘要: Density Functional Theory (DFT) calculations were used to determine adsorption of oxygen at GaN(0001), i.e. Ga-terminated surface. It was shown that at low coverage the oxygen molecule dissociates during adsorption so that the two separate O adatoms are located in H3 sites. Oxygen adatom saturates three Ga broken bonds, modifying their energy by overlap with Op states, so that the three states are degenerate with valence band (VB). The electron counting rule (ECR) indicate on the electron surplus, the excess electrons are donated to other Ga broken bond states, the adsorption energy is equal to 3.74 eV/atom for clean surface. At the first critical coverage it is, the Fermi level is shifted to conduction band while at the second critical coverage shifted down to VBM. The adsorption energy is for, for and decreases and, respectively, for the energy jumps to, and for higher coverage the energy rapidly decreases to zero and becomes negative The singular point at is essential for stability of oxygen coverage of the surface. The equilibrium pressure at low coverage is 10?5 bar for 1500 K and 10?12 bar 1000 K. It is reduced for higher coverage, due to reduction of the energy and configurational entropy contributions. At the coverage the pressure is reduced by several orders of magnitude, indicating extremely high thermodynamic stability of such coverage, which is responsible for chemical inactivity of GaN(0001) surface observed in experiments, the critical factor for mechano-chemical polishing of the substrates for electronic applications.
关键词: Density functional theory,Surface,Oxygen,Gallium nitride
更新于2025-09-09 09:28:46
-
Radially resolved electronic structure and charge carrier transport in silicon nanowires
摘要: The electronic structure of silicon nanowires is studied using density functional theory. A radially resolved density of states is discussed for different nanowire diameters and crystal orientations. This approach allows the investigation of spatially varying electronic properties in the radial direction and extends previous studies, which are usually driven by a one-dimensional band structure analysis. We demonstrate strong differences in the electronic structure between the surface and the center of the nanowire, indicating that the carrier transport will mainly take place in the center. For increasing diameters, the density of states in the center approaches the bulk density of states. We find that bulk properties, such as the indirect nature of the band gap, become significant at a nanowire diameter of approximately 5 nm and beyond. Finally, the spatial characteristic of the current is visualized in terms of transmission pathways on the atomic scale. Electron transport is found to be more localized in the nanowire center than the hole transport. It also depends on the crystal orientation of the wire. For the growing demand of silicon nanowires, for example in the field of sensors or field-effect transistors, multiple conclusions can be drawn from the present work, which we discuss towards the end of the publication.
关键词: charge carrier transport,radially resolved density of states,silicon nanowires,density functional theory,electronic structure
更新于2025-09-09 09:28:46
-
Probing the upper band gap of atomic rhenium disulfide layers
摘要: Here, we investigate the ultrafast carrier dynamics and electronic states of exfoliated ReS2 films using time-resolved second harmonic generation (TSHG) microscopy and density functional theory (DFT) calculations. The second harmonic generation (SHG) of layers with various thicknesses is probed using a 1.19-eV beam. Up to ~13 nm, a gradual increment is observed, followed by a decrease caused by bulk interferometric light absorption. The addition of a pump pulse tuned to the exciton band gap (1.57 eV) creates a decay-to-rise TSHG profile as a function of the probe delay. The power and thickness dependencies indicate that the electron–hole recombination is mediated by defects and surfaces. The two photon absorptions of 2.38 eV in the excited state that are induced by pumping from 1.57 to 1.72 eV are restricted because these transitions highly correlate with the forbidden d–d intrasubshell orbital transitions. However, the combined usage of a frequency-doubled pump (2.38 eV) with wavelength-variant SHG probes (2.60–2.82 eV) allows us to vividly monitor the variations in TSHG profiles from decay-to-rise to rise-to-decay, which imply the existence of an additional electron absorption state (s-orbital) at an approximate distance of 5.05 eV from the highest occupied molecular orbital states. This observation was critically examined by considering the allowance of each electronic transition and a small upper band gap (~0.5 eV) using modified DFT calculations.
关键词: density functional theory,ReS2,time-resolved spectroscopy,ultrafast carrier dynamics,second harmonic generation
更新于2025-09-09 09:28:46